{
"cells": [
{
"cell_type": "markdown",
"id": "1643e0f5-5313-4edb-adf3-89e6724d8f36",
"metadata": {},
"source": [
"# Works analysis and plot with concepts 1"
]
},
{
"cell_type": "markdown",
"id": "a2718d66-43f2-4fc4-ba5a-11edc42110e2",
"metadata": {},
"source": [
"## Import the library"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c937a300-f0e1-4ed4-95f0-6ccd1f8b0dfc",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:41.351458Z",
"start_time": "2024-04-22T17:24:40.840214Z"
}
},
"outputs": [],
"source": [
"# Import the full library\n",
"from openalex_analysis.plot import InstitutionsPlot, WorksPlot\n",
"\n",
"# If you only need the analysis methods, you can import them without the plot ones with:\n",
"from openalex_analysis.analysis import InstitutionsAnalysis, WorksAnalysis"
]
},
{
"cell_type": "markdown",
"id": "e2aabb02-6710-4312-8630-444a24875ea8",
"metadata": {},
"source": [
"## Basic case"
]
},
{
"cell_type": "markdown",
"id": "946127ba-07e0-4365-8c08-a72332afb6fb",
"metadata": {},
"source": [
"### Works of a concept\n",
"\n",
"In this example, we will analyse the works of sustainability and their references"
]
},
{
"cell_type": "markdown",
"id": "a602ea1d-e1f4-47eb-b152-74a99ee71edc",
"metadata": {},
"source": [
"#### Get the works"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "88b95d9a-6cc5-4851-b13e-5444f41b1c5e",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:42.400744Z",
"start_time": "2024-04-22T17:24:41.352513Z"
}
},
"outputs": [],
"source": [
"concept_sustainability_id = 'C66204764'\n",
"\n",
"wplt = WorksPlot(concept_sustainability_id)"
]
},
{
"cell_type": "markdown",
"id": "463e44d9-dfb3-4880-a71d-108e52471b11",
"metadata": {
"tags": []
},
"source": [
"#### The works array"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3534bfc0-988a-435f-b6aa-19d3d9a858ac",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:42.426325Z",
"start_time": "2024-04-22T17:24:42.401935Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" doi | \n",
" title | \n",
" display_name | \n",
" publication_year | \n",
" publication_date | \n",
" ids | \n",
" language | \n",
" primary_location | \n",
" type | \n",
" ... | \n",
" referenced_works_count | \n",
" referenced_works | \n",
" related_works | \n",
" cited_by_api_url | \n",
" counts_by_year | \n",
" updated_date | \n",
" created_date | \n",
" abstract | \n",
" institution_assertions | \n",
" is_authors_truncated | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" https://openalex.org/W2198847224 | \n",
" https://doi.org/10.1016/s1352-0237(01)00307-0 | \n",
" Human Development Report | \n",
" Human Development Report | \n",
" 2001 | \n",
" 2001-05-01 | \n",
" {'doi': 'https://doi.org/10.1016/s1352-0237(01... | \n",
" en | \n",
" {'is_accepted': False, 'is_oa': False, 'is_pub... | \n",
" article | \n",
" ... | \n",
" 0 | \n",
" [] | \n",
" [https://openalex.org/W4392167019, https://ope... | \n",
" https://api.openalex.org/works?filter=cites:W2... | \n",
" [{'cited_by_count': 14, 'year': 2024}, {'cited... | \n",
" 2024-09-06T14:44:04.425232 | \n",
" 2016-06-24 | \n",
" In 2013, UN-Habitat released the State of The ... | \n",
" None | \n",
" None | \n",
"
\n",
" \n",
" 1 | \n",
" https://openalex.org/W1999167944 | \n",
" https://doi.org/10.1126/science.1259855 | \n",
" Planetary boundaries: Guiding human developmen... | \n",
" Planetary boundaries: Guiding human developmen... | \n",
" 2015 | \n",
" 2015-02-13 | \n",
" {'doi': 'https://doi.org/10.1126/science.12598... | \n",
" en | \n",
" {'is_accepted': True, 'is_oa': True, 'is_publi... | \n",
" article | \n",
" ... | \n",
" 163 | \n",
" [https://openalex.org/W1007704209, https://ope... | \n",
" [https://openalex.org/W4235755527, https://ope... | \n",
" https://api.openalex.org/works?filter=cites:W1... | \n",
" [{'cited_by_count': 891, 'year': 2024}, {'cite... | \n",
" 2024-09-06T06:00:48.170112 | \n",
" 2016-06-24 | \n",
" Crossing the boundaries in global sustainabili... | \n",
" None | \n",
" None | \n",
"
\n",
" \n",
" 2 | \n",
" https://openalex.org/W2126975094 | \n",
" None | \n",
" Climate change 2007 : impacts, adaptation and ... | \n",
" Climate change 2007 : impacts, adaptation and ... | \n",
" 2007 | \n",
" 2007-01-01 | \n",
" {'doi': None, 'mag': '2126975094', 'openalex':... | \n",
" en | \n",
" {'is_accepted': False, 'is_oa': False, 'is_pub... | \n",
" book | \n",
" ... | \n",
" 1 | \n",
" [https://openalex.org/W1905429483] | \n",
" [https://openalex.org/W617039848, https://open... | \n",
" https://api.openalex.org/works?filter=cites:W2... | \n",
" [{'cited_by_count': 44, 'year': 2024}, {'cited... | \n",
" 2024-09-14T10:43:11.583624 | \n",
" 2016-06-24 | \n",
" Foreword Preface Introduction Summary for poli... | \n",
" [] | \n",
" None | \n",
"
\n",
" \n",
"
\n",
"
3 rows × 51 columns
\n",
"
"
],
"text/plain": [
" id \\\n",
"0 https://openalex.org/W2198847224 \n",
"1 https://openalex.org/W1999167944 \n",
"2 https://openalex.org/W2126975094 \n",
"\n",
" doi \\\n",
"0 https://doi.org/10.1016/s1352-0237(01)00307-0 \n",
"1 https://doi.org/10.1126/science.1259855 \n",
"2 None \n",
"\n",
" title \\\n",
"0 Human Development Report \n",
"1 Planetary boundaries: Guiding human developmen... \n",
"2 Climate change 2007 : impacts, adaptation and ... \n",
"\n",
" display_name publication_year \\\n",
"0 Human Development Report 2001 \n",
"1 Planetary boundaries: Guiding human developmen... 2015 \n",
"2 Climate change 2007 : impacts, adaptation and ... 2007 \n",
"\n",
" publication_date ids \\\n",
"0 2001-05-01 {'doi': 'https://doi.org/10.1016/s1352-0237(01... \n",
"1 2015-02-13 {'doi': 'https://doi.org/10.1126/science.12598... \n",
"2 2007-01-01 {'doi': None, 'mag': '2126975094', 'openalex':... \n",
"\n",
" language primary_location type ... \\\n",
"0 en {'is_accepted': False, 'is_oa': False, 'is_pub... article ... \n",
"1 en {'is_accepted': True, 'is_oa': True, 'is_publi... article ... \n",
"2 en {'is_accepted': False, 'is_oa': False, 'is_pub... book ... \n",
"\n",
" referenced_works_count referenced_works \\\n",
"0 0 [] \n",
"1 163 [https://openalex.org/W1007704209, https://ope... \n",
"2 1 [https://openalex.org/W1905429483] \n",
"\n",
" related_works \\\n",
"0 [https://openalex.org/W4392167019, https://ope... \n",
"1 [https://openalex.org/W4235755527, https://ope... \n",
"2 [https://openalex.org/W617039848, https://open... \n",
"\n",
" cited_by_api_url \\\n",
"0 https://api.openalex.org/works?filter=cites:W2... \n",
"1 https://api.openalex.org/works?filter=cites:W1... \n",
"2 https://api.openalex.org/works?filter=cites:W2... \n",
"\n",
" counts_by_year \\\n",
"0 [{'cited_by_count': 14, 'year': 2024}, {'cited... \n",
"1 [{'cited_by_count': 891, 'year': 2024}, {'cite... \n",
"2 [{'cited_by_count': 44, 'year': 2024}, {'cited... \n",
"\n",
" updated_date created_date \\\n",
"0 2024-09-06T14:44:04.425232 2016-06-24 \n",
"1 2024-09-06T06:00:48.170112 2016-06-24 \n",
"2 2024-09-14T10:43:11.583624 2016-06-24 \n",
"\n",
" abstract institution_assertions \\\n",
"0 In 2013, UN-Habitat released the State of The ... None \n",
"1 Crossing the boundaries in global sustainabili... None \n",
"2 Foreword Preface Introduction Summary for poli... [] \n",
"\n",
" is_authors_truncated \n",
"0 None \n",
"1 None \n",
"2 None \n",
"\n",
"[3 rows x 51 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wplt.entities_df.head(3)"
]
},
{
"cell_type": "markdown",
"id": "2bf849f4-3f14-4dd5-af1c-6dbf045786c6",
"metadata": {},
"source": [
"#### Compute the most used references"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "aa6cec4b-dad0-446b-bd20-08ff5d165033",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:43.483369Z",
"start_time": "2024-04-22T17:24:42.428458Z"
}
},
"outputs": [],
"source": [
"wplt.create_element_used_count_array('reference')"
]
},
{
"cell_type": "markdown",
"id": "59a3f9a6-db72-4bf0-95bd-87e58c74931c",
"metadata": {},
"source": [
"#### The reference count array"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "fcec40ed-b8b3-4bda-b429-a28ad4823a1e",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:43.490584Z",
"start_time": "2024-04-22T17:24:43.484942Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" C66204764 Sustainability | \n",
"
\n",
" \n",
" element | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" https://openalex.org/W4285719527 | \n",
" 1495 | \n",
"
\n",
" \n",
" https://openalex.org/W49479346 | \n",
" 421 | \n",
"
\n",
" \n",
" https://openalex.org/W2026816730 | \n",
" 296 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" C66204764 Sustainability\n",
"element \n",
"https://openalex.org/W4285719527 1495\n",
"https://openalex.org/W49479346 421\n",
"https://openalex.org/W2026816730 296"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wplt.element_count_df.head(3)"
]
},
{
"cell_type": "markdown",
"id": "9ade5a3f-2e1c-47ea-971b-82a77aed0521",
"metadata": {},
"source": [
"## Advanced cases"
]
},
{
"cell_type": "markdown",
"id": "f456a317-61d0-4979-8bdf-3ab55de98342",
"metadata": {},
"source": [
"### Compare the works of a concept and of 2 institutions per year\n",
"\n",
"#### Analysis\n",
"\n",
"In this example, we will compare the works of concept (Sustainability) and the works of 2 institutions (SRC - Stockholm Resilience Centre and UTT - University of Technology of Troyes) year by year. \n",
"The analysis will focus on the concept used by the works but it also work with the references used as in the previous example."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e511fbd9-3e1d-4cdc-999c-5bd9bcd394ed",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:46.227459Z",
"start_time": "2024-04-22T17:24:43.491688Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" C66204764 Sustainability | \n",
" I138595864 Stockholm Resilience Centre | \n",
" I140494188 Université de Technologie de Troyes | \n",
" sum_all_entities | \n",
" average_all_entities | \n",
" proportion_used_by_main_entity | \n",
" sum_all_entities_rank | \n",
" proportion_used_by_main_entity_rank | \n",
" h_used_all_l_use_main | \n",
"
\n",
" \n",
" element | \n",
" year | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" https://openalex.org/C18903297 | \n",
" 2015 | \n",
" 441 | \n",
" 21 | \n",
" 3 | \n",
" 465 | \n",
" 155.0 | \n",
" 0.948387 | \n",
" 0.999085 | \n",
" 0.848525 | \n",
" 0.847748 | \n",
"
\n",
" \n",
" 2016 | \n",
" 495 | \n",
" 31 | \n",
" 0 | \n",
" 526 | \n",
" 175.333333 | \n",
" 0.941065 | \n",
" 0.999263 | \n",
" 0.853373 | \n",
" 0.852744 | \n",
"
\n",
" \n",
" 2017 | \n",
" 531 | \n",
" 29 | \n",
" 1 | \n",
" 561 | \n",
" 187.0 | \n",
" 0.946524 | \n",
" 0.999339 | \n",
" 0.850048 | \n",
" 0.849487 | \n",
"
\n",
" \n",
" 2018 | \n",
" 579 | \n",
" 45 | \n",
" 1 | \n",
" 625 | \n",
" 208.333333 | \n",
" 0.9264 | \n",
" 0.999479 | \n",
" 0.861684 | \n",
" 0.861235 | \n",
"
\n",
" \n",
" 2019 | \n",
" 661 | \n",
" 60 | \n",
" 2 | \n",
" 723 | \n",
" 241.0 | \n",
" 0.914246 | \n",
" 0.999670 | \n",
" 0.869095 | \n",
" 0.868808 | \n",
"
\n",
" \n",
" 2020 | \n",
" 791 | \n",
" 57 | \n",
" 2 | \n",
" 850 | \n",
" 283.333333 | \n",
" 0.930588 | \n",
" 0.999746 | \n",
" 0.858706 | \n",
" 0.858488 | \n",
"
\n",
" \n",
" 2021 | \n",
" 874 | \n",
" 68 | \n",
" 9 | \n",
" 951 | \n",
" 317.0 | \n",
" 0.919033 | \n",
" 0.999822 | \n",
" 0.865494 | \n",
" 0.865340 | \n",
"
\n",
" \n",
" 2022 | \n",
" 895 | \n",
" 59 | \n",
" 2 | \n",
" 956 | \n",
" 318.666667 | \n",
" 0.936192 | \n",
" 0.999898 | \n",
" 0.856144 | \n",
" 0.856056 | \n",
"
\n",
" \n",
" 2023 | \n",
" 954 | \n",
" 58 | \n",
" 7 | \n",
" 1019 | \n",
" 339.666667 | \n",
" 0.936212 | \n",
" 0.999975 | \n",
" 0.855936 | \n",
" 0.855914 | \n",
"
\n",
" \n",
" https://openalex.org/C66204764 | \n",
" 2015 | \n",
" 441 | \n",
" 21 | \n",
" 3 | \n",
" 465 | \n",
" 155.0 | \n",
" 0.948387 | \n",
" 0.999085 | \n",
" 0.848525 | \n",
" 0.847748 | \n",
"
\n",
" \n",
" 2016 | \n",
" 495 | \n",
" 31 | \n",
" 0 | \n",
" 526 | \n",
" 175.333333 | \n",
" 0.941065 | \n",
" 0.999263 | \n",
" 0.853373 | \n",
" 0.852744 | \n",
"
\n",
" \n",
" 2017 | \n",
" 531 | \n",
" 29 | \n",
" 1 | \n",
" 561 | \n",
" 187.0 | \n",
" 0.946524 | \n",
" 0.999339 | \n",
" 0.850048 | \n",
" 0.849487 | \n",
"
\n",
" \n",
" 2018 | \n",
" 579 | \n",
" 45 | \n",
" 1 | \n",
" 625 | \n",
" 208.333333 | \n",
" 0.9264 | \n",
" 0.999479 | \n",
" 0.861684 | \n",
" 0.861235 | \n",
"
\n",
" \n",
" 2019 | \n",
" 661 | \n",
" 60 | \n",
" 2 | \n",
" 723 | \n",
" 241.0 | \n",
" 0.914246 | \n",
" 0.999670 | \n",
" 0.869095 | \n",
" 0.868808 | \n",
"
\n",
" \n",
" 2020 | \n",
" 791 | \n",
" 57 | \n",
" 2 | \n",
" 850 | \n",
" 283.333333 | \n",
" 0.930588 | \n",
" 0.999746 | \n",
" 0.858706 | \n",
" 0.858488 | \n",
"
\n",
" \n",
" 2021 | \n",
" 874 | \n",
" 68 | \n",
" 9 | \n",
" 951 | \n",
" 317.0 | \n",
" 0.919033 | \n",
" 0.999822 | \n",
" 0.865494 | \n",
" 0.865340 | \n",
"
\n",
" \n",
" 2022 | \n",
" 895 | \n",
" 59 | \n",
" 2 | \n",
" 956 | \n",
" 318.666667 | \n",
" 0.936192 | \n",
" 0.999898 | \n",
" 0.856144 | \n",
" 0.856056 | \n",
"
\n",
" \n",
" 2023 | \n",
" 954 | \n",
" 58 | \n",
" 7 | \n",
" 1019 | \n",
" 339.666667 | \n",
" 0.936212 | \n",
" 0.999975 | \n",
" 0.855936 | \n",
" 0.855914 | \n",
"
\n",
" \n",
" https://openalex.org/C86803240 | \n",
" 2015 | \n",
" 441 | \n",
" 21 | \n",
" 3 | \n",
" 465 | \n",
" 155.0 | \n",
" 0.948387 | \n",
" 0.999085 | \n",
" 0.848525 | \n",
" 0.847748 | \n",
"
\n",
" \n",
" 2016 | \n",
" 495 | \n",
" 31 | \n",
" 0 | \n",
" 526 | \n",
" 175.333333 | \n",
" 0.941065 | \n",
" 0.999263 | \n",
" 0.853373 | \n",
" 0.852744 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" C66204764 Sustainability \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 441 \n",
" 2016 495 \n",
" 2017 531 \n",
" 2018 579 \n",
" 2019 661 \n",
" 2020 791 \n",
" 2021 874 \n",
" 2022 895 \n",
" 2023 954 \n",
"https://openalex.org/C66204764 2015 441 \n",
" 2016 495 \n",
" 2017 531 \n",
" 2018 579 \n",
" 2019 661 \n",
" 2020 791 \n",
" 2021 874 \n",
" 2022 895 \n",
" 2023 954 \n",
"https://openalex.org/C86803240 2015 441 \n",
" 2016 495 \n",
"\n",
" I138595864 Stockholm Resilience Centre \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 21 \n",
" 2016 31 \n",
" 2017 29 \n",
" 2018 45 \n",
" 2019 60 \n",
" 2020 57 \n",
" 2021 68 \n",
" 2022 59 \n",
" 2023 58 \n",
"https://openalex.org/C66204764 2015 21 \n",
" 2016 31 \n",
" 2017 29 \n",
" 2018 45 \n",
" 2019 60 \n",
" 2020 57 \n",
" 2021 68 \n",
" 2022 59 \n",
" 2023 58 \n",
"https://openalex.org/C86803240 2015 21 \n",
" 2016 31 \n",
"\n",
" I140494188 Université de Technologie de Troyes \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 3 \n",
" 2016 0 \n",
" 2017 1 \n",
" 2018 1 \n",
" 2019 2 \n",
" 2020 2 \n",
" 2021 9 \n",
" 2022 2 \n",
" 2023 7 \n",
"https://openalex.org/C66204764 2015 3 \n",
" 2016 0 \n",
" 2017 1 \n",
" 2018 1 \n",
" 2019 2 \n",
" 2020 2 \n",
" 2021 9 \n",
" 2022 2 \n",
" 2023 7 \n",
"https://openalex.org/C86803240 2015 3 \n",
" 2016 0 \n",
"\n",
" sum_all_entities average_all_entities \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 465 155.0 \n",
" 2016 526 175.333333 \n",
" 2017 561 187.0 \n",
" 2018 625 208.333333 \n",
" 2019 723 241.0 \n",
" 2020 850 283.333333 \n",
" 2021 951 317.0 \n",
" 2022 956 318.666667 \n",
" 2023 1019 339.666667 \n",
"https://openalex.org/C66204764 2015 465 155.0 \n",
" 2016 526 175.333333 \n",
" 2017 561 187.0 \n",
" 2018 625 208.333333 \n",
" 2019 723 241.0 \n",
" 2020 850 283.333333 \n",
" 2021 951 317.0 \n",
" 2022 956 318.666667 \n",
" 2023 1019 339.666667 \n",
"https://openalex.org/C86803240 2015 465 155.0 \n",
" 2016 526 175.333333 \n",
"\n",
" proportion_used_by_main_entity \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 0.948387 \n",
" 2016 0.941065 \n",
" 2017 0.946524 \n",
" 2018 0.9264 \n",
" 2019 0.914246 \n",
" 2020 0.930588 \n",
" 2021 0.919033 \n",
" 2022 0.936192 \n",
" 2023 0.936212 \n",
"https://openalex.org/C66204764 2015 0.948387 \n",
" 2016 0.941065 \n",
" 2017 0.946524 \n",
" 2018 0.9264 \n",
" 2019 0.914246 \n",
" 2020 0.930588 \n",
" 2021 0.919033 \n",
" 2022 0.936192 \n",
" 2023 0.936212 \n",
"https://openalex.org/C86803240 2015 0.948387 \n",
" 2016 0.941065 \n",
"\n",
" sum_all_entities_rank \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 0.999085 \n",
" 2016 0.999263 \n",
" 2017 0.999339 \n",
" 2018 0.999479 \n",
" 2019 0.999670 \n",
" 2020 0.999746 \n",
" 2021 0.999822 \n",
" 2022 0.999898 \n",
" 2023 0.999975 \n",
"https://openalex.org/C66204764 2015 0.999085 \n",
" 2016 0.999263 \n",
" 2017 0.999339 \n",
" 2018 0.999479 \n",
" 2019 0.999670 \n",
" 2020 0.999746 \n",
" 2021 0.999822 \n",
" 2022 0.999898 \n",
" 2023 0.999975 \n",
"https://openalex.org/C86803240 2015 0.999085 \n",
" 2016 0.999263 \n",
"\n",
" proportion_used_by_main_entity_rank \\\n",
"element year \n",
"https://openalex.org/C18903297 2015 0.848525 \n",
" 2016 0.853373 \n",
" 2017 0.850048 \n",
" 2018 0.861684 \n",
" 2019 0.869095 \n",
" 2020 0.858706 \n",
" 2021 0.865494 \n",
" 2022 0.856144 \n",
" 2023 0.855936 \n",
"https://openalex.org/C66204764 2015 0.848525 \n",
" 2016 0.853373 \n",
" 2017 0.850048 \n",
" 2018 0.861684 \n",
" 2019 0.869095 \n",
" 2020 0.858706 \n",
" 2021 0.865494 \n",
" 2022 0.856144 \n",
" 2023 0.855936 \n",
"https://openalex.org/C86803240 2015 0.848525 \n",
" 2016 0.853373 \n",
"\n",
" h_used_all_l_use_main \n",
"element year \n",
"https://openalex.org/C18903297 2015 0.847748 \n",
" 2016 0.852744 \n",
" 2017 0.849487 \n",
" 2018 0.861235 \n",
" 2019 0.868808 \n",
" 2020 0.858488 \n",
" 2021 0.865340 \n",
" 2022 0.856056 \n",
" 2023 0.855914 \n",
"https://openalex.org/C66204764 2015 0.847748 \n",
" 2016 0.852744 \n",
" 2017 0.849487 \n",
" 2018 0.861235 \n",
" 2019 0.868808 \n",
" 2020 0.858488 \n",
" 2021 0.865340 \n",
" 2022 0.856056 \n",
" 2023 0.855914 \n",
"https://openalex.org/C86803240 2015 0.847748 \n",
" 2016 0.852744 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"concept_sustainability_id = 'C66204764'\n",
"institution_src_id = 'I138595864'\n",
"institution_utt_id = 'I140494188'\n",
"\n",
"# count per year from 2015 to 2023\n",
"count_years = list(range(2015, 2024))\n",
"\n",
"# The filter needs to have the format from the OpenAlex API\n",
"sustainability_concept_filter = {\"concepts\": {\"id\": concept_sustainability_id}}\n",
"\n",
"# Create a list of dictionary with each dictionary representing an institution\n",
"# The dictionary keys can be any parameter of the WorksConceptsAnalysis constructor\n",
"# In our example, we add an extra filter to get only the works about sustainability of each institution\n",
"entities_to_compare = [\n",
" {'entity_from_id': institution_src_id, 'extra_filters': sustainability_concept_filter,},\n",
" {'entity_from_id': institution_utt_id, 'extra_filters': sustainability_concept_filter,}\n",
"]\n",
"\n",
"# We create instance with the concept of sustainability. In the analysis, the main entity is\n",
"# the entity given to the constructor if given, or the first entity in the list given to the\n",
"# create_element_used_count_array() function\n",
"wplt = WorksPlot(concept_sustainability_id)\n",
"\n",
"wplt.create_element_used_count_array('concept', entities_to_compare, count_years = count_years)\n",
"\n",
"# We sort the entities in the statistics array by the most used. We can also sort them again later\n",
"# with sort_count_array()\n",
"wplt.add_statistics_to_element_count_array(sort_by = 'sum_all_entities')\n",
"\n",
"#wplt.element_count_df.to_csv(\"array.csv\")\n",
"wplt.element_count_df.head(20)"
]
},
{
"cell_type": "markdown",
"id": "3f223c22-7d06-4aa3-b227-003573bd1198",
"metadata": {},
"source": [
"#### Plot\n",
"\n",
"As we keep only the 10k most cited articles in each dataset, the selected articles for sustainability contains only 2% of them (~500k in total). As the recent articles are usually less cited than the older ones, we have less articles in the recent years.\n",
"\n",
"The default plot plot the usage of the first concept in the dataframe"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9aa3b3d0-2c04-413d-977b-99282d6104f4",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:46.952282Z",
"start_time": "2024-04-22T17:24:46.228346Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "entitie=C66204764 Sustainability
Year=%{x}
nb_used=%{y}",
"legendgroup": "C66204764 Sustainability",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "C66204764 Sustainability",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023
],
"xaxis": "x",
"y": [
441,
495,
531,
579,
661,
791,
874,
895,
954
],
"yaxis": "y"
},
{
"hovertemplate": "entitie=I138595864 Stockholm Resilience Centre
Year=%{x}
nb_used=%{y}",
"legendgroup": "I138595864 Stockholm Resilience Centre",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "I138595864 Stockholm Resilience Centre",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023
],
"xaxis": "x",
"y": [
21,
31,
29,
45,
60,
57,
68,
59,
58
],
"yaxis": "y"
},
{
"hovertemplate": "entitie=I140494188 Université de Technologie de Troyes
Year=%{x}
nb_used=%{y}",
"legendgroup": "I140494188 Université de Technologie de Troyes",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "I140494188 Université de Technologie de Troyes",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023
],
"xaxis": "x",
"y": [
3,
0,
1,
1,
2,
2,
9,
2,
7
],
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"legend": {
"title": {
"text": "entitie"
},
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Plot of the yearly usage of C18903297 (Ecology) by the entities",
"x": 0.5,
"xanchor": "center",
"yanchor": "top"
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
2015,
2023
],
"title": {
"text": "Year"
},
"type": "linear"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
-53,
1007
],
"title": {
"text": "nb_used"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABUcAAAFoCAYAAAB0akoKAAAgAElEQVR4XuydBZwVZRfGzy7dISCIhK2fjSIWBiCghEqLgnR3d3d3d0hJg4SgICqlYotikIp0N+x3nneZ693L5p3du+/uPi8/fht33pl3/mfO3TvPnAgK0SEcJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDECARRHE1iFufpkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJGAIUR3khkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJEkCFEeTpNl50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRHeQ2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkSQIUR5Ok2XnSJEACJEACJEACJEACJEACJEACJEACJEACJEACFEd5DZAACZAACZAACZAACZAACZAACZAACZAACZAACSRJAhRHk6TZedIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIUR3kNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJEkCFEeTpNl50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRHeQ2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkSQIUR5Ok2XnSJEACJEACJEACJEACJEACJEACJEACJEACJEACFEd5DZAACZAACZAACZAACZAACZAACZAACZAACZAACSRJAhRHk6TZedIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIUR3kNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJEkCFEeTpNl50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRHeQ2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkSQIUR5Ok2XnSJEACJEACJEACJEACJEACJEACJEACJEACJEACFEd5DZAACZAACZAACZAACZAACZAACZAACZAACZAACSRJAhRHk6TZedIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIUR3kNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJEkCFEeTpNl50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRHeQ2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkSQIUR5Ok2XnSJEACJEACJEACJEACJEACJEACJEACJEACJEACFEd5DZAACZAACZAACZAACZAACZAACZAACZAACZAACSRJAhRHk6TZedIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIUR3kNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJEkCFEeTpNl50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhRHeQ2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkSQIUR5Ok2XnSJEACJEACJEACJEACJEACJEACJEACJEACJEACFEd5DZAACZAACSQ6Al0HTZMlH30W5rxSpkwhuXNmk2KFn5I6VUtJ+nRpzOvY9vMd38unH46INw5Y68gpi+XMuQsybVg7efKR+6Jcy7pNO6VVj7GybHofue+uO6PcPiFuYINtEiK3H3b/JZ36TZIDfx+RprXLS+133ojwNHZ+u1tmL14v3/30h5w+c04yZ8ogD96bRyqVeVWKvFjglnnHTpyWLgOnyJbtP8iEga2lcKFHw2xz+sx5GTtjmXz65S7BtrdnyyLFXnpKGlQr6/E5TNi+6xcZM22J/PTrXkmRIrk8//TD0q5xVcmVI6tnf9euX5dJs1fK0rWfy9FjJ+X27FmlQumX9XxKSXBwkGe7DVu+lmnzPpLf9x6S5MmSyX133yn1q5XRfT7i2ebS5Ssy9YPVsmrDNvn36AnJfltm817Q8P03w6xr/vJPZM7ij+WgssuUMb2ULvacNKtTXlLp+wdGp/6TZfm6LyLkuXnJSMmWNVOkl82QCQtk45ZvZOHE7nL+4iUpWrFVpNvj/WDOmM6xdike1vPHMXu2qWl4BmrAnnXbDJa0aVLL6D7Nw9gwvDUE0v8T8vupY88+7WvL268XDtecYLn1659kw4KhgTI3j0MCJEACJEACCYoAxdEEZS4ulgRIgARIIDoEcCO4dM0WFRrbeza/oCLE97/8IbMWrZP8eXLJ/AndjJDi7w3427W6SPM6FeSV55+IzpIi3ebFN5vKPfnvkI5N35U8d+SQdGlT37J9v1FzJUXyZNK2URXzWkK+mY8uMH9tE939J9btIJrv2LVbxvRrbh4IQAgMb0xU4XHU1MXy6EN3y5slXjDi47Hjp2Tlx1vlmx9+k2oVikuHJlU9Uzd9+a0Ko1N1uyyy+/f94Yqj1Zr2lcNHT0r3Vu/LXXlzyZ4/D0r3IdPlofvymu0xvvlhj9Ro0d8IotUrlpAzZy/I4HHzBQ8wIPY7QiSu+cWrN0vrBpXlkQfyy7c//S7DJi7UhxulpUmtt82+1nyyXdr0Gi/l3nhJShV7Vq5evSYzFq4ViL6zRnWSJx6+12zXvOto+fKrH6VprXLyv/vzy0+/7ZWRkz+Ul597XIb3bGK2maLi6fBJi8yaiqow/LNuM0x/LvFKQRnYub7Z5s/9/yij07fgnP3hOvlNz3XVrP5G7I1orN64Tboqw4UTe8i9d+VWVqFCZdniL8gbRZ8Nd1qmDGnlsf/dE2uXa3yJoziBk6fPSrnaXY2I10yF+8hGXPo/BHVc/4sm9TBLSEjvp6fPnpfnyzSWnWsmGKH5wsXLsnL9F/LMkw8Zn8Pw/XsBf/hX/bL0a8/F2nXEHZEACZAACZBAYiJAcTQxWZPnQgIkQAIkYAjgpnrZ2i3ywyfTbyEyd8kGvXGco0JNK416e8wvcRQ3o4VKNTDRT7Ehjj78Sg1pWP1Nj+ATnhmrNOwlTz16f5IQRyFwQWCKS3EkMbtKjRYD5MaNG0YcjGh8vuMHqd9uqBGpererJUFB/0VihoorcwS+MlUjmZ8t8D+zm7I1OkuVN4vIwypUVm3U+xZxdP+hf+X1d9vfEpE4ee4qGaFC5OfLR0sWjUxt0H6YCokHZO3cQUYQxfjx17+kcv2eRlStVPZVOX7yjLxaoYW0rFtRalZ53XMa2A8ecGxZNto8RGjQfqhcunxVZozo4Nnm/IVL8lyZRvJeudc0GvUd+UsFzdLVOxqhF4KvM4ZOWCjT5n+kItNEXUdyeaFsE3mh4CMyrEdjzzYzFqyVwePny0oVPe++KTz5Mv1DI1bL1+kmo/s2N+8pEQ08oClZtZ2UKf68tG0Y+pDDESoh2jaoXjYgl2V8iqM4wcWrP5Pew2capngYFNGIS/+HyL71658TpDiKqG1c9444Gp2/FwG5sHgQEiABEiABEkjABCiOJmDjcekkQAIkQALhE4hMHEUab6X6PaRry+pG6PG9Ab9xI0SmL1hjItb+PnxMUqdOJQUevU9aqEhzv6brIiKvZssBngOnSZ1Svlo7KdyFRLWvrV/9JHU0zdR7TB/eQSOAHgzzO4in3mOBpuMe+ueYSaufPbqTpgFvMKUBEAn77FMPG4EpU8Z0ninzlm2UeUs3CsSrtCooFX7mMWnTsHKEEYXjNC16wuwVsnHhsDDbIO3/pbebSc3Kr2vUbHkTsYTIw/Wbd8rxE2d020wamfS8NK75tolyxcA2ELSQZn1UoxIzZUgnhTTCCdGAiEDEQJoy0pUh5nUdNFWuXbsu6+cPCWMbCH4nTp2VFTP6hmGxZfv3RmybMqStPKeRiL6jfZ+J8t3Pf8jaDwaFeemJ1+pIdRXKWtWvZH6PyDGkZv914B8JCQkxEVhIRy/xyjOeeUi3XrRqk7I/queXXB64N6+0rFdRHveK6kNEGiISkdJ+h0ZtgsU2FWG+06jHFTP7+W0TZyI4IuLttz8OGEHzPo0+rPtuGSlauIAgbfnxorXDnGcjTRvHGnwHruFfdR+fLBouqVOlvOV1pKHj9cc0qtQRTv/597jkuv02wzM8cXTfwX/ljffai296LyI5ERn62dJRcluWjFL4rabyvIqQTjSmc3AIh0iJH92nmXy0cbu07T1e1qiAmjf3fwIaSgZUadDTRMW++vyT4frdlStX5ZlSDeW98q9JG73O8PNB9eWcer0h0s4ZSKHvPXyWuTauqCBf9v1O0qttLSlf6iXPNo6Q6Cuseh+4dqtBkkbfJ7CmyAaE2FFaPmPT4pFaviC92TSm4uhZ9UEIexs//0bOnb9ortP6WrKg+MtPew4d2TXifUzvtPrf/zpk/PSr73+VS5cum2sXwrl3CQMcu8+I2bJp67cqvofIS88+ptdeaSMMD+vRSP7Y+3e03jdwnZao0lZeeOYRwzuigffmL3f+KP071ZNB4+aZsgmZtdQBxHNc1xCbXy7XwkQ9d2lRLcxuIHx/sHSDsh4hGdKnDfPa+837y1ff/er5Ha4RnG9cvZ86B9r2zc8ydvoyE5GMZxGPPXSP/l2p4IkKxvvjK+VbyOCuDTVKeo+s/XSHOccH7slr/l49qO83Y6cvlXEzl3vW/tKzj0v31u+b6GPH78L7e7Fg+ae3pNVHtR7YeNKcleb9GddpGn2fQJQ53vOwFg4SIAESIAESSEwEKI4mJmvyXEiABEiABAyByMRR3HC27jnOCDCoqegrjiKtFtFiEA9ffu4JOaVpoP3HfCB7NfoMkU6oQ/i13ljXbj1IBnapLy8WfNQjdPjij86+zp2/IEirR3QcxLj06dJ6hEVnf0hFfa1yaxUBXjTRpbjZR81C3Mw/+uBdWjfwFXlSBVykOnfqN1mqlism7TViDsNJnUZkGtJ2j2jtxl4qCIVoZOHiKb08kXvea8dNerFKrbVeZTlTn9UZiPhCivS6eYNNujYYQGzu1vJ9efzhe0zdyp7DZshrLz1tbtQxIHp+8sUuGaACB0oHYN89h82UDHqeTh1FRwgroJGxlVX4uDtfLpP67G0bJ+113riuYVKM2/dV8VOPu2buwFuiH3H86Iij4Fahbncj9CCqD+MjrU05ftZycY6HMg1IKUck4qtaSgHRiuNnLjPC5+o5AyVr5gxGTKxQt5uKRo+b9G1EwPYdOVtOa9o4RPQlU3v7bRNMdCLGKqq93y1fTIL0H+qFfrhqs0wc1FpefOZRk7bcpNNIcxyIdalTpTLH9h5YV8HX68vrRZ5V4alujN81IhJHsSNcE6g1OrJXUy1fkdOkoTfpNEIFnjye9HUIQFirc404C0BKPmqWQkR2BPpvP54apjYlBLpnSzdScb2S1KryXy3V69dvGCHpbxVwJ6jddmga8fzx3SKNTGzYYbjs+eugfKxC/P5DR4ywCx5IcXeGIzibBykqUPkOlBpo1nWULJ/e15PSHBFQCMqpUqUQPABxhiOOQuyro9dfeANCvFNjFcLeIRV6O2kJDgh6Kz/+0rxfOfVfo3ON+EaOwiff1Khg2AvXNwTszVu/M4IkGEPAw8D7zWfbvtOHLzXU3+9Vv/5GFuu1BxuP6t1M/fLuaL1vYF94D1qvDyQgmHvXj/U+f/j/hs++MucJf8qp9Wjhh3hI4Qi7EGtXbdgqqPXqlGPAww28X+JBke81hv3jGmrVY5xGJ582kdEQtnG+cfV+imMirb1Wq4HmvRF1bo1/TluqD7V+kA8n9zTXDnwXfwtwvqjRixR4COD12g4x723Y7uKlK+bhHURSXLcZ9WHTuQsXw4ij4f296Dl0ZhhxNDrrmbvkYxmiIjMYPvrg3VoT+7wRSyEsR/RQJcZvJpxAAiRAAiRAApYQoDhqiSG4DBIgARIggdgj4Iijuz6e4tnpJb2pRM3R7kNmmN+hNiBupr0FONx4vvhmExWNCoW5qd574LCUqtbBiAQQ0JwU4LH9WkSYVh/dfWEtiPSJKMLPOYGnS9ZT4bDILWn1SM+tUbmk5zwhTuFc547tIpc1Yg4322ia450q/MMvfwrS9BGh9EbRQuGCh3jwy559RnR0BiLkkmtEKIQ41I2EmIWIrXfeKurZZqpGX0IURtQpIkNR5+7qtWtyZ67snm0gbvQfPVe2rx5vmuE4wicikrzFWG/bQKSC4AHhEcIIBqIbC7/VzDTf8Z7nfULREUcd4RNiA4QJZ+Ac78qb06SCQ7SDiIQ6kc6AGIr6iU4UI6IjIVYiMhBiKQaiLUtUbSv35s9txFE3NoEwBp7eQjBEweJV2hjhedLgNuaY2A5j5siO4doW+yhSsaU0rvGWNNL/MR2RiaNIaYfIBNEnWbJgwfoQ1TqoSwNPhCqiVo+fPKuCYh+PoA3BFmtCOQUILwP0gcQybcS0bdW4MMuD8PXIqzWNHzqiHTaASNlYRVgM1Ofs37GuEfsiGk40K1Lhi7zwpF6j16Wg+lj5Ui+HEUEhnCMyEkKVb6Qr9g1RHQ3RohKZEb1aoEQ94+fezB2hMjIbOFHRX3//m1Rv1u+WqNlug6fJIypeVSrzirF9VNeIrzgKoW38rBWehx7OWtr1nqAR39/KlyvHqih3WcsONJaqbxcztZGd0UPfTxFNDXEUdo7qfcOZt27TDrNtZA3lnMZ6vtH0KJGQRSNvZ4/urNGqh0y5BzyoQvMsDFMvt2k/z4ON8NhCGIeI71tzNK7eT/G+/Oe+v2XdB4M9D6TwN6JY5VZSXAXT7q1reMRRRKsjEtcZTlmKb/XvGfxj+vw1Klou8KTVh9eQyffvhW9Dpuisp6M+aEMkMd4XnQH/RkkMPLxyxOiYvn9wexIgARIgARKwkQDFURutwjWRAAmQAAm4IhBet3pnh4hY69y8midV11uAc1J2+3aoI2+VfDHMGl5Q0bTQk/8zN63REUejuy8cxI04iug4pDo6A4IDbl4h/jpr6NGmhiDa0HsU0rRjiAnhRcNhO0QWIZUdqe5PPXa/ERJQAxLNa9DlGynCSF39SKMm8915u2fXEFQhGIETbvKRCo9IPuzv5OlzphYmRE3cZCN1HhGojjgKMe/pxx/w7Ms3qhfRhNM1Sg5RYmnTpDJppxA/P/lwuIl2C29ERxw9qGnylTVVO2P6dEZgQno+Ih2963BCPEOtS6TNH7kp+F7Xczml5+SksyLCC/sCE+8BIRriGMRRNzZ5SsW1kq8+I7g+vUfL7mNMNBfqcGJEJY7Cli+Xax5lnduInDAicRTCZdPOo0w0JsomQJyEeDVU08Af0jTcURqtDaYfazRgi25jTKQ0oiXBBhHJEP8yalQ0rouYiqNoUoNSAxAGIdZBiIKIDxHHdzhiYFcV9itrRKgzUGd14cpNhi+ucTwUQZQ5utvjWvaNQnRKbKDMxSMP3BXpexZE8mIq7vv6oiNs4bp7K4JO4/fku8M8RHBEMac8QXgHjM414iuOoizFH8rLWwTDvj/QUhyIfEYkLyIYEfk6qGsDKeXVOMqJVHXE0ajeN5w1Ow9XJg9po425HgmXHfx/+brPxTd6GNHiW7Z9b0RbDLxPBet1NW14aAM+RKXuUoF06bQ+EdokInE0rt5PYRc0+QI/74Eob5Q7AWMnctQ3KnqBln/AOeF9L1vWTLEijkZnPchOaNF9tHlPLqPlUlB72PvhUaQXPF8kARIgARIggQRGgOJoAjMYl0sCJEACJBA1ASdydJ4Kh85ImSKFRi9mC1NzEK95C3BODdDw6hmi0QxqH0JwiY44Gt19YQ1uxFHfyCuIOYh2Wz17gDhrQC3SoOCwDXcQqQcBaGTvphECfbNmZ3lYxaV+GoUHYRBRoRsXDTO1TUdq7USkWIbXmRv77tTsXY0oLSbvNukjBzRluZvWQUXHcTTgQRosoix9xVHfc/EVR510fwhMqIfYtPNIc3zvqFjfk4mOOIo5SFWeoemqmzS9FrVm0eG9lpY6QAMfCHqI1AIDRCsWffEp0wwIcyAYOeLou437yA0VCJGK7yuA/P3vMSOO+msTJ737fe2kjtRn7wFhccX6L2XX+snm11GJo6glWKB4HY30e0qGdv8vQi1qzwrdIiJxFGIKUsx9RW6nLqyT+o99IKV4yrzVpvQArgk0T0LjpGOa6gyBCiUNxmttxV3rp5gIVGeg7u1zmlbvG+HnvXYI2Yj2zKx1d72bUuH3qGn78eavZEDneibF2XtAsO/Yf5IpWYGB6N8OGiXZS8tAoNyDU5/WmYMyC99r/VXvWrIRMXQiUJ2HBs52Mak56vhcRI14onuN+Iqj7zXpax5YIG3be8BP4T+4npG6XbfNEE/5Bmc752GII47i95G9bzjznIhPXH8Q/MMb8P9NWmPXEf2dbVCWA9HeiKTEcB6uoHYsauK+onVIG9d8K0xEu+/+IxJH4+L91LELygck0/dO73FdI+JRYgRCryOOdmr2nryrpVGcEdviaHTXg+MjCheN2fC+hQcQeGgEP8BDRg4SIAESIAESSEwEKI4mJmvyXEiABEiABAyByGqO+iLyFuAc0dO3oQzmPF+msWkiM6Rbw2iJo9HdF/YdV+Ko03wKQtJLzz1+y9WB6Muc2bNGeNWgYc1QFQU/WzpaarborxGVj5hGTBhOF2+IT1luppB77+i2zBk12vSUSXn15QlRFUJPTMVR7B+RsSdPn1FRt5lpDjW+f8twGzE5a3Fqkno3ZIJI9qQ2ZIL46St4YR4iuRBBiEg9Z+2h5QkeC5M+vevHPQJhydkGqaonNVLWqS3qrAECKsQn/N6NTZAqW/zlgkas9h7Nu47WBi6/m8gyjKjEUWwDceir73bLBi1/gCZZvgPp8KOnLTHNiXw7ikckjk7Q1GzMgdDjvU9E05Z4p62pg1tdxV1noFkXBO8c2bKYuqio+VlIo9PQUMwRvCDye6fHex/72af+Z2pS5tGHFr6Rmya6UJt1fbkiNLoQ59Om1ziNYP5Vxg9sZWr1RjQgUiFSEkLbCU3/R8Q0/B7lNpyBKFnUTkV9UkT6RTWcyFGkTyNK1BkxEUedaG3U/PUuU+F97OhcI77iqFN7dcOCoWFOAzUn+42aa6LQEfWNMhreIig2/kIbJiFi2vv3kb1vOAeIbuQoaqo6IqgzFw+Atn/zi3y+PDRS2im5UbHMq8auiEqGLyDaNqLhjzjqxndR47dwocdNzWjfgahXXOOBEkdx/Oisx3udeKDy4+4/TfmFL3b+oI3x+kVatiIqf+DrJEACJEACJGAbAYqjtlmE6yEBEiABEnBNwF9xNLQeJNLGnw4jgqGTM6KhELGHyD1H+IysY3Z094WTja44Wklv/p2oQUc8iizSCenKL6io9/brL2ok53thuCKN9m5tAuKdOu4L3ukGjfTnMVqX0GnEhO0gxiFSckSvJmEi8DAH9TkhLDnioVPXEfMgTJar1cU0cXFEnojOxTdyFPORtluz5UBTt3GFdlGOqBGTcy5IlV69cZt8sXyM5/Sc1HacF8RR2POsNk3y7XaPWp4vqiCK9GuIqe9ovUWn0RV25pRvcMRRdD5HRBvEQacDPNK8nZqgEEfd2ATiKxoHoW6h08QGwhA6VaNhitMtPTriqJMSjnqbw7RUQgqtJes9kNY++8P1pmEN0mm9R0TiKBp2of4lakEW0AZhznAiR50oQcxHyjq6jDsDZQGwbqe+JKLUID6iMQ1qyjpj4Nh5suSjz4z4BcbFKrXSiO7bPSnV2A5Czlt6jSXXiFNHqIYYj+7laAKGGqHhDaT7p0+bJsx1gM7gEMk/1dIN3mKbU28WUcslXikY5XsW7P6Uits4n8Y1/xPIYiKOOozQ4R2itTMgjkMgRtf16FwjvuKo07RtzdxBnnIj2DfKNUCEROTmqTPnzMMI39rIuOYhhnqLo5G9bzhrjknNUd+yBa+/205y5bgtjM1RcuOjT7bL/+7LZyKRw2vE5G0kiKMQ5p1o2bh+P0XULRpAoQme93su/Dmn1mbGmmMqju74aIKJYI+o5qj33wvfmqPRWQ/q+ObWbAtvf3FE/sgifqN0Bm5AAiRAAiRAAhYSoDhqoVG4JBIgARIgAXcE/BVHcVSk+06au1LaNXrHNFtCd/f+oz8wN9LLZ/Q1EXEH/j4iJau209TH16TcG4UFNQHDSy+Pzr5wzOiIoxDAIDiiARIaHUHcQuObyMRR7BvCB7qqQwR8+bkn5MrVq7JIoyIhaCyc2EMe1FqQkQ10g1648lN5Tjs/Iy3ae9RpM9jUlITwitqOYIVz3qeRl4g2Q8p0URWvntDO1j00Yg4p0aOmLpY7bs8m85ZtNPX3Xn3+SRPhF965hCeO4vgQqpGC3ax2+QgbMTnrXPWxpgZrFCFu5iFi7Tv4r9ZRnKPi7h6TdgsuEL8g/kL4fObJh8xURMShaRQiBpH2a7qEawTkGG3CBZEMDM9qdOEiZYNGWc00ohY1L7EdarnWr15WG2NdNrUzUXc1pab/e3er98cm277+WcAc19z7lUrKNRWa0bl6taY/zxzZySNIRkccxTk6kYhoMlVBGxHl1qZZqEe6cv0XKmz/Lq2VTU2NrsVAyjki5zD+2HdIcF2AHURZjMcfvscIv2VrdDJpwu2bVDWRZRBBIVBjrfAfCJofbdwubXuPl3rvlTFNfMAVoif25V3mAdcKIpRRvxQRgTtVQB055UOTUo9yBxgfard0lBWA0Iq6iKgDu3j1ZlmvqfOOaI1IYEQwoxTD66/e2oAMzaxQs7bn0Bla8mGbKQlx/9159Hi7ZcRkHK+y8XXv4dRNhU2RahydgYcJeJ+YMeLWbvWIQH3Dq5an7/4KPfmgmYtI5b0HDxufy39nThUEt8nMheu0W30rk+ocnWvEVxw9fvKMsRtE5o5qt8za7Ai1ddFYrXmdCh4fQyOt3Xv2K9c66u/5tFv9LiNUo2SAb0RpZO8bODfU0IRAukWj0iPqVo+yBeAMca5V/YpabzOzOR4aFKE5FppkOcMpuREiITJHxXk05YpsdOg3yTTxmqTvaVnV9ri24/L9FMI2+JV/42V9yFJUI6VTmaZlg8fP1781Vcx7UXTFUYsjG2cAACAASURBVDDAe+OATvXkIRWD06dPE6ZbPc7b9+/FsImLwnSrj856ICDjfbaDXhPwEUR6z9M6tIjmXak1Ull/NDpez21IgARIgAQSCgGKownFUlwnCZAACZBAtAm4EUeRLgtBBmnVqD2JyByk76KTund6cecBU2SNRipl0rqGS6f2MYKC74juvqIjji5c8ampe4lu8RAGcKManZt5rAlCJG5qIRKlUnEKKcgNtWu2d/OjiOA60WqjtZlOEW0o4j2wBqRRr9+0U45qCn3mjOlNlCFYQcjF+Gzbd6a+6AEVwJAKXO+90lJSm9sg+hONoyDypE2TOkbiKKL5Js1eofVPI27E5KwT6dSDxs0zzZuQKn2/ClmdtI4kUnNRc7KtChOwE0TGZWs+N3VEg4ODTZMp1P2DoIYBkQ8i3I+7/zLiKBp2Na1dzpwbBDoINT3b1BTYaZKKN8dUTL9LI3PBYpG+DvEGtTSd4a9NNmtNVAirv/550DShgSiN+ore0Z3RFUexFjRBQk1BiMUQcVFn83EVlqpVKBEm+tOJlo7oOnFKJEB4QxTfVhVyIbRm1wYyL2g5CkRLopmMM9DsB2nb4I0HDmWKPy9NdBsn4hbbIQJ0qtYlhS8eVeEdYsx75Ytrx/SiYZYB287UerBowgQmd+vDCkQFO9erI6BGtPbBXRuqMFlIEO2NMhIQVk9pav2dd+RQEbrELc3MsB+nWRGaGEVXJIIID7F105IR2m09g1lOdLrVYzvU+kUJDETUYo2ffL5LzmuUNqK/G73/lhGZnRHVNeIrjmIeIrmHaYO1Hd/+IpcvXzXXP0Q8iHbOQBR0DxWQt3/zs+lU/trLTxs/QGf4CQNba9r4f3UoI3vfgE8imhqR2pFFeELA/FlFy47qrxARYV+U8MA1APv6DoiPZzQCHNGZUQ3Uim3Zfaw+sDmv2QAl5b67VYCNxsMm7Ndf34VwPVZ94+ff9prl4eFBlbeKeK6v6IqjuAbqaykDvAcgQhsNxCCGepcv8f17gWt669c/iXfphKjWc1YfZg3X6/Wzrd8aX06n73sQYxE9XODR+6NCzNdJgARIgARIIEERoDiaoMzFxZIACZAACZBAYAlAEESUKmo/RhThFcgVmWY7tbuayLCoUmcDuS7nWIjCy6hin3eaepnqHY2IObBL/fhYEo9pCQGkmyPiHBGuEOUT2oB4jHNwhF2sH8I0HjSgvAUiT50R2fsGyi+gydVKjS5Hk7vYGKhrW7paB+nVrpapA8tBAiRAAiRAAiRAAjEhQHE0JrS4LQmQAAmQAAkkAQIQQdBhfr2mtI7VdHPvmqHxdfqntCEMOr6jTAAioNAhPLJmUvGxzt80kqucCreIpkPjIUQxogbpjIVrb+ngHh/r4zHjnwDq33bVdHGUtEA5g4Q0EFmJByUQIO/TtSOaGunziAhHbdrovG8gOrl8HfhIYU9zNzcMEAXrlMpInSqFRmd3t+Ihjptz4lwSIAESIAESIIHAE6A4GnjmPCIJkAAJkAAJWE0ADagq1u+hafLpNP3+rTDdteNr4UgTRe3K/HlySTftZu7d8Ce+1hTecZHSPFFT/vcoQ0TaIsUbpQRQW5WDBEAA5TE2bvlGBdLukiF92gQDBXVnh05cKJ9+8Y2cVJEze7Ysmkr/mDSrVc6UFYnqfQPp9HXaDDL1Nsf0bRErIma73hPMQ5xnCzwkvdrWlhzZMicYnlwoCZAACZAACZCAPQQojtpjC66EBEiABEiABEiABEiABEiABEiABEiABEiABEgggAQojgYQNg9FAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgDwGKo/bYgishARIgARIgARIgARIgARIgARIgARIgARIgARIIIAGKowGEzUORAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnYQ4DiqD224EpIgARIgARIgARIgARIgARIgARIgARIgARIgAQCSIDiaABh81AkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL2EKA4ao8tuBISIAESIAESIAESIAESIAESIAESIAESIAESIIEAEqA4GkDYPBQJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIA9BCiO2mMLroQESIAESIAESIAESIAESIAESIAESIAESIAESCCABCiOBhA2D0UCJEACJEACJEACJEACJEACJEACJEACJEACJGAPAYqj9tiCKyEBEiABEiABEiABEiABEiABEiABEiABEiABEgggAYqjAYTNQ5EACZAACZAACZAACZAACZAACZAACZAACZAACdhDINGKo6s2bJWeQ2dIn/Z1pMQrBT3Et2z/XvqNmiNHj5+Sxx++VwZ2ri/ZsmYyr0+eu0pmLlwn165flzeKPiudm70nyZIFy/5DR6RT/8nyy559kjtnNunVrpY8oXM5SIAESIAESIAESIAESIAESIAESIAESIAESIAEEi6BRCmOzli4Vr7+7lcjgNas8oZHHD1z7oKUfKetDOneUAo+8ZCMmLRI/jlyXIb1aCzbvv5ZugyaKjNHdpRMGdJJww7DVSAtJO+8VVSqNe0rLxR8VGpXLSWbt35rxNV184ZIiuTJEq7luXISIAESIAESIAESIAESIAESIAESIAESIAESSOIEEqU4uvv3/fLAPXmkTuvBUqnsqx5xdO2nO2TJR5/JpMFtjNnPqlj6crnmsm3VOBkwdp7kypFV6r5b2rz26Ze7TBTp0O6NpGTVtrJVt0meLFQMrVC3u7Rv/I4KrA8m8cuHp08CJEACJEACJEACJEACJEACJEACJEACJEACCZdAohRHHXPUbjUojDg6cfZKOX7ytHTSdHlnQBydNaqT9Bo+U6q8WURee+lp89Jf+/+Rmi0HmqjSXsNmyrLpfTxz2vQaL4UKPCQVS78ih09cSrjW58pvIZAza2raNBFdF+nT6AONoCA5d+FaIjqrpH0q9NHEZX/6aOKyJ86GPpq4bEofTVz2pI8mPns6Nk2cZ8azIgESIIHAEUhS4uiIyR+aeqJtGlT2EH6tShsZ1bup9BkxW+pXKyMvPfu4ee3vw8fkrVpdZESvJjJy8mJZMLG7Z07nAVPkfo1Mfb9iCbkREhI4a/FIcU4gWIU02jTOMQfsAEESZI4Vov84EgcB+mjisKNzFvTRxGVPnA19NHHZlD6auOxJH0189nRsmjjPjGdFAiRAAoEjkKTE0UlzVso//x6X7q1reAg/V7qRzJ/QXXqPmCXlXn/J1BnF+PWPA1K/3VAZ3rOxdBk4VVbPHuCZ06zrKClc6DETOfr38YuBsxaPFOcE7rgtDW0a55QDd4AMaZKbyNGzF64G7qA8UpwSoI/GKd6A75w+GnDkcX5A+micIw7oAeijAcUdkIPRRwOCOaAHgU05SIAESIAE3BFIUuLo+s1fydwlH5umSxho2FSyajtTc3TQuHmSOWN6aVzzbfPaRxu3y+LVm03zpmKVWssXK8ZI6lQpzWulqnWQ3tqxvsCj91NIc3f9WTebHxitM4mrBfGmzhU+KyfTR600i9+Loo/6jc7aifRRa03j18Loo35hs3oSfdRq8/i1OIqjfmHjJBIgARIIQyBJiaPnL1wyzZUGdqkvBR9/UAaM+UBrEV6UgZ3ryzc//Cbtek8w9UfTpUsj9doMMfVKy5d6SWq3HiRPPfaAada0btMOGTllsayZO9A0aGLkaOLyKH5gTFz25E1d4rInzoY+mrhsSh9NXPakjyY+e9JHE59N+Xc0cdo08Z0Vz4gESIAEAksgUYqj6Cb/+95Dcu3adUkWHCxBwUEqgNbTrvXPyLZvfpaeQ2dq1OhJeRoCaad6kjlTekN95qJ1MmXuKrmq894q+aLpSB+kKblIxW/fd6L89OteyXNHDunboY48/EB+M4fiaGAv2Lg+Gj8wxjXhwO6fN3WB5R2Io9FHA0E5cMegjwaOdaCORB8NFOnAHIc+GhjOgTwKfTSQtANzLEaOBoYzj0ICJJC4CSRKcTSQJqM4GkjacX8sfmCMe8aBPAJv6gJJOzDHoo8GhnOgjkIfDRTpwB2HPho41oE4En00EJQDewz6aGB5B+JoFEcDQZnHIAESSOwEKI66tDDFUZcALZvOD4yWGcTlcnhT5xKghdPpoxYaxcWS6KMu4Fk6lT5qqWH8XBZ91E9wFk+jj1psHD+XZrs4eubcBUET5GXT+8h9d90Z5iwje81PHJxGAiRAAn4RoDjqF7b/JlEcdQnQsun8wGiZQVwuhzd1LgFaOJ0+aqFRXCyJPuoCnqVT6aOWGsbPZdFH/QRn8TT6qMXG8XNpNoqjf2iJu8NHT8oLBR+Ra9evyzff75FHHrxL0qZJJZG95icCTiMBEiAB1wQojrpESHHUJUDLpvMDo2UGcbkc3tS5BGjhdPqohUZxsST6qAt4lk6lj1pqGD+XRR/1E5zF0+ijFhvHz6XZKI6igfGVK1elbaMqt5xVZK/5iYDTSIAESMA1AYqjLhFSHHUJ0LLp/MBomUFcLoc3dS4BWjidPmqhUVwsiT7qAp6lU+mjlhrGz2XRR/0EZ/E0+qjFxvFZ2vUbImfPBsm5syJn9OsZfD0TIqfPBJnf4+fLl0VG9ksZJye1fdcvMmjsPPlr/z9ye/YsUrHMK1Kj0usSrM2OB4+fr+s4L5kyppPNW7+Ts5o6X6b489KmQWUZM22pTJyzQoKDgiV7tsyyZGpvT1r9uk93RvgaUu4vq6A6UI+59tPtEnIjRKNN75bOzd+T/Hlyxsk5cqckQAIk4BCgOOryWqA46hKgZdP5gdEyg7hcDm/qXAK0cDp91EKjuFgSfdQFPEun0kctNYyfy6KP+gnO4mn0UTuMc+mSCpxnRE5D5DynIqgKnqdV+MTvIISeVeHz3PmgaC12ysgU0douJhsdP3lGSlZtJz3a1JASrxSUfQcOS/12Q6Vxzbfl7dcLy7CJC2Xesk+kT/ta+voz8usfB6R8nW7y4eSe8uC9eaVp55GSN/ftJnLUt65oZK8NmbBAvv/5DxnSrZERXifMWiFrPtkuq2b3l+TJksXkFLgtCZAACcSIAMXRGOG6dWOKoy4BWjadHxgtM4jL5fCmziVAC6fTRy00iosl0UddwLN0Kn3UUsP4uSz6qJ/gLJ5GH41b4zjRnkbkPBcqcp4+raKnCp6hEZ+h0aBXr0W9jiDVRtOnD5EMGUQyZdCvGfE1SH8OkYz6vfl9xhuSP1eaqHcWwy2mzf/IRITOHNnRM3PKB6tly/bvze8gjm7e9p0sn97X83rRiq2kTcPK8nqRQn6Jo/fmzy3PvNFAxvZrKc88+aDZ73UFWqhUAxnXv5XndzE8FW5OAiRAAtEiQHE0Wpgi3ojiqEuAlk3nB0bLDOJyObypcwnQwun0UQuN4mJJ9FEX8CydSh+11DB+Los+6ic4i6fRR/03zsWLN8XOm5GdJtXdz2jPlClV4PQSOTNmxM9B+l9U+MT3ocIoBNKoRlzUHO0xZIYsWrXplkPnuv022bBgqBFHf/vzoEwY2MqzDSJN61crYyJL/YkczZwxvbxSvkW4p9unfW2zXw4SIAESiCsCFEddkqU46hKgZdP5gdEyg7hcDm/qXAK0cDp91EKjuFgSfdQFPEun0kctNYyfy6KP+gnO4mn00VuNc+P6zZqeSG+/KXz6RntCCL0Wg2hPiJsZVOTMBLHTN9oz0w1JGYuZ8HEhjvYcNlOOHT8lo/s2D/dqhji6569DMn5Ay1gTR7MorJfLNZfFU3qZ1HwOEiABEggkAYqjLmlTHHUJ0LLp/MBomUFcLoc3dS4BWjidPmqhUVwsiT7qAp6lU+mjlhrGz2XRR/0EZ/G0pOaj4UZ7apo7mhmhzie+nr8QjfBMtWkqjfb0Tml3E+0Zm5dIXIijMxaslfnLP5G1HwzyLPXYidOSIX1a5ZDCRI7GtjiKhkwFX28gXVtWk7LFX/Ac99DhY5I7Z7bYRMZ9kQAJkMAtBCiOurwoKI66BGjZ9KT2gdEy/LG+HN7UxTrSeN8hfTTeTRCrC6CPxipOK3ZGH7XCDLG2CPporKG0ZkeJxUfDRHvebGKEFPczZ4JvdnVX8VNrfrqJ9oT4ibqeqO+ZUWt7xma0Z2xeEHEhjqIhU4l32miafFmpXrGEQBht1mWUvPbS09KgetkoxdE2vcbLVS2s2qttLRHVnp8v01iWTe8jEEAjew0NmT75/ButO9pC7rwjh3yoqf2jpiyWDQuHSbq0qWMTG/dFAiRAAmEIUBx1eUFQHHUJ0LLpieUDo2VY4205vKmLN/RxdmD6aJyhjZcd00fjBXucHpQ+Gqd4A75z+mjAkcf5AROCjyLa00R2miZGzlcIn9rBHXU+Yxjt6S1yZtA6nhkz+lfbM86N4+cB4kIcxVK2ff2zDB4/X/7Y97eWB0gnZYo/Ly3qVjBd46OKHP1MmzW17T1BUqdKKUum9paX3m7mEUcje+3S5SsycOw8Wbdph1y+fFUeuCePdGhSVR773z1+0uE0EiABEogeAYqj0eMU4VYUR10CtGx6QvjAaBkyq5fDmzqrzePX4uijfmGzdhJ91FrT+L0w+qjf6KycSB+10iyuFhWfPopoz9Po4G4iPUNFT99oT9T2vK7bRTWcTu6+tT0TSrRnVOcXk9fjShyNyRq4LQmQAAkkdAIUR11akOKoS4CWTY/PD4yWoUgUy+FNXaIwY5iToI8mLpvSRxOXPXE29NHEZVP6aOKyZ1z66AWt23n2ZkMj32jPUBFU5IJGhEZnoLanb7RnJo32zID0du3wnkm/pksXvU7u0TleQt+G4mhCtyDXTwIkYAMBiqMurUBx1CVAy6bzps4yg7hcDm/qXAK0cDp91EKjuFgSfdQFPEun0kctNYyfy6KP+gnO4mkx9dFboj21iRHET0R4IgL09M0I0OhEewYHi6RXUdMRORH1iU7u3kJoJq3tmSIWO7lbbIpYWxrF0VhDyR2RAAkkYQIUR10an+KoS4CWTY/pB0bLls/l+BDgTV3iuyToo4nLpvTRxGVPnA19NHHZlD6auOzp66NOtOcZFTzPqsh5GjU+tZM7vnd+x2hP+68BiqP224grJAESsJ8AxVGXNqI46hKgZdN5U2eZQVwuhzd1LgFaOJ0+aqFRXCyJPuoCnqVT6aOWGsbPZdFH/QQXy9MuXQrtuq7Nv+XqldCv5uerQfr/5s/69Qp+j9/p15AbN8JdxbkzyeWPv27IydPRS3HHTjLcTGVPj69e0Z7o4p4+vUjmTIz2jGWTx2h3FEdjhIsbkwAJkEC4BCiOurwwKI66BGjZdN7UWWYQl8vhTZ1LgBZOp49aaBQXS6KPuoBn6VT6qKWG8XNZ9NHwwYUKkipCqlAJkdKIkka0DBUmr10NCRUuzfc3f3/1hlzR34X+HCpsmu2M0Bm6ryvXQjzfm33ptnE5vGt7ZlDRM1NGTXlHmjsEUP3eNDtSQZTDbgIUR+22D1dHAiSQMAhQHHVpJ4qjLgFaNp03dZYZxOVyeFPnEqCF0+mjFhrFxZLooy7gWTqVPmqpYfxcVkLy0UuXvYVHiI9ORGWoSHlVhUgjQuL3ECb1d5ev3PBEWoZGYob+/287r/3o64jgjI+RUmtwpkgRYmpxJk+Or0GSIrl+f/N3KZIHme+xXXL9fUrz++DQ1/VnM0//4/Wct6WUyzeuqBDKaM/4sGVcHJPiaFxQ5T5JgASSGgGKoy4tTnHUJUDLpvOmzjKDuFxOQrqpc3mqSWY6fTRxmZo+mrjsibOhjyYum7rxUU/atyd68qbweDOi8j8h0kkXh3B5I1TIVBHzv0hMRGH+ly5uRE7vfei2EWSQx5kxkiX7T6w0IiUEyJT633yvgqTn+1BBMlS4DPYSN0PnJ1dR04iX2p391v2EbpNMmxjF5qCPxiZNO/ZFcdQOO3AVJEACCZsAxVGX9qM46hKgZdP5gdEyg7hcjpubOpeH5vQ4IkAfjSOw8bRb+mg8gY/Dw9JH4xBuAHd9/ESQHD8eJOfOJJOz50Pk/IVQ0dIInjdrXoamjIeteelJF9fXAj0QHZnipjBpBEoIjzcjLo14iWhLI0iGRlKm1G2SpwwO/Wrm3hQsb0ZlYl/JjcgJATNU8MR+IXYm5EEfTcjWC3/tFEcTn015RiRAAoEnQHHUJXOKoy4BWjadHxgtM4jL5VB4cQnQwun0UQuN4mJJ9FEX8CydSh+11DDhLAvdyI+pAHr8hMiJEyFy5Ci+D9LvYy91PFWq/8TIUPEyVJg0YqMRLm9GXTpp4ypWptCozOQaSZnSicj0bHdzjkknvxmRqd+nTs2amDG56uijMaGVMLalOJow7MRVkgAJ2E2A4qhL+1AcdQnQsun8wGiZQVwuh8KLS4AWTqePWmgUF0uij7qAZ+lU+qhdhrmsNTKPHBUjeh4/HiJHjwXJyVP4XZBcvx7xWtOnD5Fst2l9ytuDJGtm3Tbk+s3071BhE+ngKW9GUnqiMj3p5Cps6mscdhKgj9ppFzerSmri6NlzF2TE5A9lw5av5fTZ83JnruxS5c0i8l751wzGqxrC3nPYTFm/eaekT5dGmtepIG+WeMG89s+/x6VDv0ny069/SZ47ckif9nXk4Qfym9fGz1ou85d9YuY/X/AR6dW2pqRNk1r2HzoinfpPll/27JPcObNJr3a15ImH7w1jsh27dkvNlgNk5az+cnfeXNJl4FRZtWHrf9uEhEi+PDll+fS+ka7PmeC7P9/rY89fB2XQ2Pny6x/75brWFcG6WtStIM8//Yhfl9I1/YOw9pMdUvq15yKdP33+Gvlz/z/SWxn4M2YtWid7/joU7vynS9aTVbMHyKnT56RFtzGy9oNB4n28rV/9JHflyyU5s2f159CcQwJREqA4GiWiyDegOOoSoGXT+YHRMoO4XA6FF5cALZxOH7XQKC6WRB91Ac/SqfTRwBsGqexIgT9+XOTYiWAjgpqIUP354sWIo0DTpAmR2/Qe87bbVAjNFiTZst6QrCqIZtOfEeGJQR8NvD3j+oj00bgmHPj9JyVx9Pr1G1KtaV9Jmza1tGv0juTNnUN+3P2XESPffr2w1K9WRsZMWyq/7z0k/TvVM1+7D54mH4zrKqlTpZTqzfrJq88/Ke9VKC6LV2+WXT/ukYGd66uQ+pWMmrpYpg1rr4JqamnaZZQ89dgD0uj9N83xXij4qNSuWko2b/1W+o2aI+vmDdH3SQ1z13HlylV5p1FvOXr8lMwY2dGIo75j9LQlkkyLFWN/ka0vuvt7/d32UrNySalQ+hUJ0rd5CMGdB0yRjQuHa7O1dDG+CCH8Dp+0SCYNbhPp3IuXruiDtetGdPZnRCaOHj95RrJkyiC//XnAI456H69Jp5FS973S8vj/7vHn0JxDAlESoDgaJaLIN6A46hKgZdP5gdEyg7hcDm/qXAK0cDp91EKjuFgSfdQFPEun0kfjxjCqB8ipk5oGj7R3FT2P6n+InxBFz5yNWACFyJk1K0RQ/a+iZ3YVQUO/FxUXok5Hp4/GjT3jc6/00fikHzfHTkri6MYt32hU6AwjTqZJ/V+I+q9/HDBRoa88/4QUrdhKpg5rJ/k1UtN7HPj7iBFHISAGB4d93/xRI0kRMfrkI/eZKTM1wvHn3/YaAbZk1bayddU4SY5ObDoq1O0u7Ru/IwWfeND8PHb6UtHAUFn/2VcyoleTW8TRf46ckDqtB8niKb2MQBvR+py1RrW/q9euy5Ov1ZFPPxwu2W/L7DnFfQf/NVG0OBdEuq7WKEyM737+w/PzocPHpEPfSfq35JSKnDekYplXpOrbxaTs+53kzLnz8thD9xh2y9d9IRNnr9A609cl1+23yQAVkHPlyBomkvPZ0o2kVb2K5rwP/n1Uyr1RWOq9V8YcM6L5EEexnnPnL8ru3/eb6N0h3RuaaNDIIkfz3Xm7jFHOt2fLIg1rvCm9hmpk8Pwh+lAvkzneoLHz5IYaoUOTqnHjZNxrkiBAcdSlmSmOugRo2XR+YLTMIC6Xw5s6lwAtnE4ftdAoLpZEH3UBz9Kp9FH/DYOba9QBNSnwWgf02DH9DwFUfz6lqfARdWQP1m7mmTOHCqBIhc+WTaNBNSIUEaAZMoSYqCJ/B33UX3L2zqOP2msbf1cWl+LombOain446gcp/q49onkZMwapKHfrqwNVBDujqfR9O9QJd+oZTbl/6e1m0qZBZZm75GNJpTU+mtUuJ0VeLCAQVucsWW8EuS93/ih36teuLavLPfnuuGVfDdoPk6KFC+hruaWXpugvm97Hs02bXuOlUIGHpKJGbe49cNhEOS6c2F0q1OsRrjiKiM4nHrnXbB/Z+nCA6OwP2zXtPFL+PXZSqlcoYdbiLZJ6i6HY1vvnPiNmG0GxQfWygvIEXQdNMynuX2rKOiJpETl6+sx5eaVCC1kxo69h1WPIDPN3pHvrGmHE0efLNpZKZV416fz/Hj0pJd5poyLyeBNJG9F8iKOIop0/obvhDjbJkgVrCYNakYqjWGPZGp3NWhE52rjTCHnuqYc9pRSKV2kjg7s1ZFRpbDtiEtsfxVGXBqc46hKgZdP5gdEyg7hcDm/qXAK0cDp91EKjuFgSfdQFPEun0kejNsyFC6Ep7xA9jx4LCU2Jv9kICSnyEYoFKnQi+hNRn9n1v0mBV0E0c5YQ0XvLOBn00TjBGq87pY/GK/44OXhciqNbd96QqXMiKVAcJ2ck8uzTwVKnWmikpvdA+nzWzBmkVf1K4R4ZkZGI9Gxaq5zUqVpaftj9p9RrO0RWzuwvX+z8QXoNnyUTBraSZzTqc87ij2XJR5/J0mn/CZ/Y6bgZy+Tr73+TyUPayrZvfpKRkxfLAhU/nQFB7/578sj7FUtIrZYDpb4KjYWefMiId76Ro8dOnDaRph8vGGrS8CNbX45smaPcn7MGRI8uXPGprNu0Q77/5U8TrVq/Wlkp8UrBMGIotvcWRyfOXqlC6I9GLIoaOgAAIABJREFUPH74gbs8EbTrNu30iKOYc/7CJUmnpQswVm/cJkvXbJEpysO7BijE0alD28lD9+Uz2z2nkaSLJvc00asRzYc4+oUK0xMHtTZz8D0EbwixUdUc9RZHP9q4XWYvXi/ztFwCIlCbqFgKxkFungbG0bXM3SYcAhRHXdqK4qhLgJZN5wdGywzicjm8qXMJ0MLp9FELjeJiSfRRF/AsnUofDTUMRE6n7ufx48H6/X91QC9pk6SIRnh1QCGGQhR16oAG0vT00UDSDsyx6KOB4RzIo8SlOPrzryGyen3gxdGHHgiW0sVvfeozZMICfah0SgZ2qR8uYkRmQqTbvnq8py5m7VaDpFLZV01a/LiZy0x6O8aNGyFSoLimpy8eYWpdhmj4fv/RcwXp6cN7NtFmTKlMTVIIsk6KOuY16zpKChd6TN+Tk8tX3/2qTZ1qm/2FJ45O+WC1iQZ1tolsfRcvXY5yf+Gd9KXLV2TDZ19Lj6HTTc1UxPlGlFaPxksQOFdv2CYnTp0xdVQh8nqLo+AydsZS+WLHD+Zwp89ekDs0tR7p9r7i6Pzx3bTua2iIL8RS/HxnrhwRzoc4+sue/VoPtq6Z84PWi0UU7Ca1QUzEUdQiRYTwkqm9ZPnaL+TSlStG8OUgATcEKI66oadzKY66BGjZdH5gtMwgLpfDmzqXAC2cTh+10CgulkQfdQHP0qlJyUdRB/TkSTRACk1/NynwJgpU5Gw06oAi7d00Q7pNmyGZeqAiqVIHPn01skuJPmqpo7lYVlLyUReYEtTUuBRHbQOxeet30r7vRK05OlgyZfiv8dAf+/5WwW+rptCXDxPBiPUjuhOd7HNrRGPjjsNlw8Jh5rRQc7NA8bry+fLRkiF9WlO3EqnqqK/pNFs6efqsFKvUWr5YMcbUC8UoVa2DSe+evmCtfPPDbxq5Hyrinjpzzuynb/s6pvYpRo0WA6RGpZKen/E77whL7/UtXft5lPvD9qhh+rt2q4dA6z0QIVus8FPy0P35pX2fCfLRnIHmZUSK9h05J4zAi99DBK7Ror+M7ddCDmjNUCetHpGik+aslNmjO0tGPZ+V67+UZbq26IqjEDwjmg9xdPuuX8wxnbUNGjvflC2IiTiKue37TJR778pthF6UWXj4gfy2Xa5cTwIjQHHUpcEojroEaNl0fmC0zCAul8ObOpcALZxOH7XQKC6WRB91Ac/SqYnNR1EH9DTqgDrd4E06fKgIelLrgOL18AbulbOgDigEUNT/9KoDmjGjXQJoZJcSfdRSR3OxrMTmoy5QJJqpSUkcRVRjzZYDTPOkzs2ryd1atxKNk5DqXq3Ca/JuuddMN/kLFy9LjzY15Odf90q9dkNl1az+ptbm27W66HbFTWf72R+ul5Ufb5VFk3rIzm93GwHxwyk9PY2XnAuktjZTQuf6uu+WNmnsI6csljVzB96yXXiRoxBfIeR61wSNbH3eF2V4+8Prf+3/RyrV72miL4u8UMDUA0UZgGZdRsm04e217EBGFXDby8ZFw424iZqhO7/bbcRR1Et9s8SLKqw+Kpe1NmiFOt2kf+d6ckRrhk7WKNcPxnaRD5ZuNCUIxvVvqVGj56VV97Fy/uIlExUancjRLdt/iHA+xNFxM5fLEo3evSNnNuk2eJqkTJFCurSoFqU4Wl7X2qJuRbN2DAjlvYfPlOQawbv2g0GJxp95IvFHgOKoS/YUR10CtGw6PzBaZhCXy+FNnUuAFk6nj1poFBdLoo+6gGfp1ITqo+dv1gFFN/jjTgr8Me0Mrx3ir8WgDqiTAg9h9GYwkaWWit6y6KPR45SQtkqoPpqQGAd6rUlJHAVbCJ+jpi6W9Zt3ysnT5ySfpnXXqFxS3ir5okGPRkOdVCzdoRGKEArbNqxsGjJh/PbnQZNyfvCfo6YhUC+NAMXXjv0my6oNX2pzoP/qnN6bP7d8qDU0//n3uIlW/UmFVjQoiihK0VfMdFLov984zTQdckZk6/O+diISR7ENokHHTl9mhFJRcTSPprKjUzyaSGEMHjdfPv1yl+TOmV1efu5x05xqzdxBJo0dDaYQ5RqsqmrZ4s9L45pva/f601KlQU+5rp3/Fk/pLY00whaNmXLmyCItVZBsqsIrBGVE6/6px0TkrJNG75tWnz5d2gjnZ86YXn75fZ821bogv+89ZNL1h3ZvZITrqCJHIarOWLBGmtcpb0RwlAh4uVxz0+gKTaE4SMAtAYqjLglSHHUJ0LLp/MBomUFcLoc3dS4BWjidPmqhUVwsiT7qAp6lU2320atXRWvVqeCJTvAntA7ozWZIx/Tny1HVAUXzo5sp8KGp8KHd4TVgJVEP+mjiM6/NPpr4aAfmjJKaOBoYqjxKQiBQunpHGaH1YZFez0ECbgkkOXF07ac79CnLUi2Uf12fhGSVnm1qSr47Q4sIT567SmYuXGeeQrxR9Fnp3Ow985Rn/6Ej5gnTL3v26dOXbOYJ0xMP32vmUBx1ewnaNZ8fGO2yh9vV8KbOLUH75tNH7bOJmxXRR93Qs3NufPvoDe0bcvxmHdCw3eBFzp2LuBGSZvUZsdP8t7wOaCAtTx8NJO3AHCu+fTQwZ5m0jkJxNGnZm2cbSmDpmi2mHipKCXCQQGwQSFLi6BHtbFe2RidTVwQh8XMWfywff/aVzBzZUbZ9/bN0GTTVfI9w8YYdhqtAWkjeeauoVGvaV14o+Kjp5rZ567emjsm6eUNMoWaKo7FxGdqzD35gtMcWsbES3tTFBkW79kEftcsebldDH3VL0L75gfBRUwf0NBofBYU2QjoWWgcU3eHx+2jVAdVI0OymC3xoJ/iMGRJOHdBAWp0+GkjagTlWIHw0MGfCozgEKI7yWkhqBN5r0lfT/s/J2P4txEnrT2oMeL6xTyBJiaNfffer9Bo+S1bM6GtI7tEub+het2XZaPP7XBpJikLLGKjRgShS1MAoWbWtbF01zlN0uULd7tK+8TtS8IkHKY7G/jUZr3vkB8Z4xR/rB+dNXawjjfcd0kfj3QSxugD6aKzitGJnsemj586Hdn5H86OjSIE39UCRFh+kXYYjPl00PApNew9thJRNBdCsGhGaWOqABtLQ9NFA0g7MsWLTRwOzYh4lKgIUR6MixNdJgARIIGoCSUocPXf+onZu6yATB7WWB+/NKxNnr5Q/tBDwoK4NBF3oqrxZRF576WlDDcWNa6pwOqxHY1O0eNn0Ph6a6PJWqMBDpvgvI0ejvsgS0hb8wJiQrBX1WnlTFzWjhLYFfTShWSzy9dJHE5c9cTYx9VFtlquRn6ERoMe1DuhxFUFDmyJpHdDLEafBp00TIlmTaB3QQF419NFA0g7MsWLqo4FZFY/ihgDFUTf0OJcESIAEQgkkKXEUJ7xi/RfSdeA0SZcutaROlVJmjOhgQrHfbdxH6lcrIy89+7gB8/fhY/JWrS4yolcTGTl5sSyY2N1zzXTW7nf335NH3q9YQs5d1E/1HImGQPo0KWjTRGNNkZTJ0RkySK5ojeG4GRHfuMfN8bjX9GmSq49G0jqaiBIUgZTJ1Ye0W+qVqzcS1Lq52IgJhOejiPI8qmLn0aMaAaqd4I8cDdFIUNGv6Coc8b5SpBTJgfT37KFfc+QIkuwaCXq7/pw6Na0QCAJx76MsZxAIO3ofg591A0087o8Hm3KQAAmQAAm4I5CkxNHdv++Xpl1GGUEUjZXWbdohI1T4XDWrv9RvP1TKvf6SqTOK8esfB6R+u6EyvGdj6TJwqqyePcBDulnXUVK40GMmcvT0eYqj7i5Bu2ZnSpeCNrXLJK5WkyqFiqOqvVy+ElfCC2/qXBnIj8mZ0qVUH73ix0xOsZFAqhTJzLIuX42rBxg2nnXiXdOlSxr9eSyF/HXgmhFAEQ16REXQkycjf5CUHQ2QVPQ0Imi2IP0fmgqfKRPfY+P7aol7H+VDxkDbmJ91A0087o8Hm3KQAAmQAAm4I5CkxNGZi9bJj7v/lMFdG3qoPVGstqz5YLBMm7daMmdML41rvm1e+2jjdlm8erMM6d5QilVqLV+sGGMiTTGQmt9bO9YXePR+ptW7u/6sm81UI+tM4mpBTAd0hc/KyfRRK83i96Loo36js2Ii6n8eOBgke/eLHDikUaFHIha60PAoWzZNhdc6oGiEBDEUdUDRHZ7DXgL0UXtt4+/K+HfUX3L2zmNavb224cpIgAQSDoEkJY5+sfNH6T5kuulWnyVTBtn61U/Sutc4+WzpKPn+5z+kXe8JMmtUJ025TyP12gyRSmVflfKlXjL1SJ967AHTrAnRpiOnLJY1cweaBk2sOZpwLvborJQfGKNDKeFsw5u6hGOr6K6UPhpdUgljO/powrCTs8pDKoDuOxAqhu7fFyQXLt4qhubLEyRZsl5XATRIa4KqGJolRHLlpACasCz932rpownVchGvm39HE6dNE99Z8YxIgARIILAEkpQ4CrST566SJR99JiH6OT1D+rSm6/zTjz9gqCOydIq+flXrE75V8kXzWpDWQvvn3+PSvu9E+enXvZLnjhzSt0MdefiB/GYOxdHAXrBxfTR+YIxrwoHdP2/qAss7EEejjwaCcuCOQR8NHOuYHunyFY0KVSF0374Q2afRoYcOBuvno7B7SZkyRPLcGSJ58wZJXnzNc0Py5UzDz0YxhW3x9vRRi43j59L4d9RPcBZPY+Soxcbh0kiABBIMgSQnjsa2ZSiOxjbR+N0fPzDGL//YPjpv6mKbaPzvjz4a/zaIzRXQR2OTprt9nToVJPtVBN23T6NCVRQ9os2T8CDZeyA1Pm9ekXx58DVEct4egn5aYQZ91J0dbJtNH7XNIu7XQx91z9C2PSQlcXT/oX9NibsfPpluzHBNO/6NmPyhTJ+/Rj5fPtpkh2LcuBEiQycsMM2Yr9+4IYWfeUy6t64hadOkEvQh6TVsppw4ddaUzWvdoJLpJ3LlylV5snhdSZEiucfERV54Uob1aKx/D0NM9uiytZ/L5ctXTIZpy3oVzXZVGvaS3Xv0j+fNP4gZNQALmakYaz/dIWOnLzXBVzlzZJWebWpKvjtvN69t3/WL9Bw6QxsVntZyfffJoC4NJFPGdJ5jnzp9Tt6o1l6a1y4vld8scstld+bcBRk45gP58qsftb/CVcmUIZ1UfbuYVKtQ3GyLLNm78uWSnNm1no0fo1CphrJ8Rt9b5j9ftrHMH9/NNLWO7pilQWh7/jpkShP6M3AuddoMDmObbFkyGi7I7vVn/PjrX9Km53hZ+8Eg8V7f0yXrySrtN+MvN3/W4jvns23fybiZy00fnDR6jT79xAPSpkHlGDH33afb6yE2zsv2fVAcdWkhiqMuAVo2nR8YLTOIy+Xwps4lQAun00ctNIqLJdFHXcBzMVXvE+Xwv6FiKNLj9x3QrvFnw6qcuMfLkT1E8qkICiE0bx6RzNFokEQfdWEYC6fSRy00issl0UddArRwelIWR5t2HikP3ptXJsxeYQRJRxxdtGqTLF61WSYMbG0EtUYdh8uzT/1PGlZ/U8rW6CwNqpU1jZghlFZv1k82LR6hpWIuy5s1O8sXy8fcYuWV67+USXNWynRt7BwcHCw1Ww4w+yr56jNGrB3Zq6nce1fuMPOOHDulx+pkSvoh+3TO4o/l48++kpkjO8rps+el7PudTC+Uxx++R/qOnC0P3ZdP3nmrqGcfnfpPlh3f7pa6VUuFK46iXOD16zekc/NqkiZ1ShUfD0rtVoM0y7Wuir2PSpNOI6Xue6Xl8f/d49dVa5s42lMFbQiZznAaaHdrWV2KvFggxucIYf2sCsy4ZrzF0eMnz5jfBQfHT8PATV9+K2213GOHJlWlqJ4X1jlz4ToV5rcY0RYiuD8jousB11CyZNrEmEMojrq8CCiOugRo2XR+YLTMIC6Xw5s6lwAtnE4ftdAoLpZEH3UBLwZTr1zRhkmaFr9vf4iJCj2o32uQSZiRQpsd35n7hoqgN9Pk9WsqTZuP6aCPxpSY3dvTR+22jz+ro4/6Q83uOUlZHIW4CXH00SI1w4ij32k/kVQpU5jXMKZ8sFr+2Pu39OtYRx4rWivMtoiEnD26swTrU8GGHYaHEeAcy3ceMEXuyX+H1KryhvnVguWfyNavf5YRvZrIy+Way4KJ3W+JNPzqu1+l1/BZskKjLzEgXtZqOVC2LBttyvxt/fqnMI2iva+yHbt2a+TgMrk3f265T0XX8CJHqzXtK1VUTC1V9FnPVJQDzKzC3twlH8sYjVi9PVsWadOwsopsT8noaUtM/xSMRx+8W7qqqJhee638rhGdXQdPk8NHjsuduXJI/0519Wt28RZHEZ37258HZEzfFvLiW02kaa1yMm/ZJ3Ls+CmpUbmk1HuvjNkv9j92xnK5du2aZMuaSXpopOzdeXOFER+fLd1Immk07MYtX8s+jQTu2ORd2bT1W8MnRfJkMnFQa43wTR3G6RD16CuOYoP2fSbKXbr/BtXLyt4Dh01/mWMnTpv5nZq9K08+cp9c1ZpAXQZNlW9//N1EERfQ3/XSCNbf9x6KMnJ089bvZPikRRr5e00F7uwa+Vpba6pnltkfrjdRnYg23v/3ESNSj9Rr4Y6c2SLkGdH6fN9dytXuKmWLv2C4eo/Fqz+Tl5973HCN6bo++mR7mOvh0OFjsufPg/KLRjy/9Ozj0qJuBZk4e6WJtEZZyWcL/M+UmPSOorb7XTB2Vkdx1CVHiqMuAVo2nR8YLTOIy+Xwps4lQAun00ctNIqLJdFHXcCLZCqiQPdp06R9+zUyVP8f1i7yviny6dNrVKgKoPnyiakbiqZJGgzjetBHXSO0agf0UavMESuLoY/GCkardhKX4mjIqRNy/dDegJ9vcKasEnxn/luO65tW72zgK456T4QQ1LzraKmjEZiI9ER05WsvPy1VNCX7mx9+kw59J8nqOQPll9/2StMuo4zYBqHugbvzSLdW70v+PDmly8CpcremqDvi6PJ1X2g031pZMrW3ScV/SdPysa+smurdql4lI2KdO3/RRJVC7INIC/HpDxXkBnVtIP1Hz1UB8brsPXhY63r/q82f75euLULFSoh5ler3kKGazv/Bkg0RiqOIdpw67yOTVv58wUeMCOk9ECGLNHZEjn60cbtuu9qIwIgyhah4u6bbt6pfUd6u1VWa1HpbihV+yuxv+zc/y6TBbTzi6K4f9hhxefboTkZ0hJj8RpFnNWL1PSNIvlWzi2xbPV5OnT4rb6uwt1CFYqTcL1y5SZas3izzJ3QPI45ifu13Sun/N8w2YLF8eh8zBxG5FUu/aqJ6vUd44iiE8bqaao/oW0QFl6/TTcXiIjr/Fflh91+CqOKP5w+RT77Ypcf5VKYMaWs+C6HcQlE915Qpk0cqjqL5dunqHc1533fXnTJjwVr55sffZFTvZio+b1AReKkK3/2MWInyCJkyppfmdcpHyDOi9XkLkIhkhXiMdUNoDW9A/I3puiB+el8PEM/Hz1wh88Z3NVHNn3z+jSlPMXdsF2PjFt3HSKEnH5L3yr8WcN+PzwNSHHVJn+KoS4CWTecHRssM4nI5vKlzCdDC6fRRC43iYkn0URfwbk7FB/1/VfyECGrE0IMip0/fmgqWPYcKoSqC5tMgGqTJZ8kc86jQ6KyWPhodSglnG/powrFVdFdKH40uqYSzXVyKo1c+WycXxvQOOIyUhYtL2qbdXIujlev3FNSWhBCK9HOkSiPiDyIcIuSQSj9ExbWihQsY4XKWRgSibuddKoiOn7VCPlVhbZkKd6s3bpMJWgNyhqbEYx8QW5F+vXJmf+mqUYnFXnpKXtS6pp/v+F7aaUr0Cv19Lq0xiki8rgOnSbp0qU190xmalg8RECnzu37cI9OGd5DbMmeQDv0mG5EN0Y7jZiwzNVMhWPYZMTtCcRRwPv1yl0ahbpEdWr8U9VRRC7Xeu2VMmrS3GIbm0g/ek1dqVnndMP18xw8mInJ0n2ZG0Nyu4iYGaqNevXrVCGSIHO3fqZ4MHjdP191RxdQsZhuImxAa/3d/fvPzcyrmLZrcU0XVX2SDRoOOH9DS/B51UAuocLxt1ThZumaLp+Yo5s8a2cmUIdim0bcoKbByVn8zp5tGsN6j0bLvVywRxvYQR+u2HSLp0oZGlF5RATmrRsjW14jRSmVeMQ20y7zfUXZ8NNGTDg+BuW3DKoZF657jpEfrmkZERUQxRlQ1R3E+H6ndIW5jXLh4yQiXu9ZPkfmIHNY1jenX3LyGkglo3t1UbRYez9Nnzke4voJPPOg5V5xHscqt5Zv1kz3rDANCf4AwH9N1IRo4rDi6QaNPvzUiOAbEfzwEwAMEDESmTl+wxlyvSWlQHHVpbYqjLgFaNp0fGC0ziMvl8KbOJUALp9NHLTSKiyXRR2MODx3jDxwIvlkvNETT5YP0BiSsGJpce0nkviO0e3z+fEGSRyNEU6eKGzHU9wzoozG3qc0z6KM2W8e/tdFH/eNm86y4FEevfb9TLi2ZFfDTT/7Y05K63Pu3HNefyFGImAPGzNVajemlbaMqJuquu0aEvvjMo/Ln/n+kZosBJjrQt8EQaj0+XaKerJs3xKRSj5q6WNZoenKWTOnl1RcKGGESjYl8B1Lny73xkhH/EIkKgSm3RgEi5XzE5MWySoXAQSo4onYpUpcxEHXaY+hMjUpsaoS8eeO6amRjiijFUefYEFMhtkKoxbEhcnmLYXXbDDHRmG+/XthMQWRlsy4jZVSf5tKy22jZsHDYLecBcRSCLgRJRMjiewzfhkzOz+s27ZQ/9/1j0vKd8ZTyWzqtt6COptOQCdsvmtTTMEH5gMHj55u6rBiIwDQRpDdFXGc/vpGjEO/6jZpjWCLyEkLnO9oYC9Gwzrh46bJ0a/m+lHiloLLfqWUANpo0ckQPd9BU/j/2RZ5Wv0ajbREdijIFzkA0MI6J/X2vpRsGdqlvXkIkKX5+T5thhcczqvU5+4dYX/D1+rJm7sAImy+h+VhM14V1+oqj3/30u4lixkA5ie9+/t1TzuCGlh+4LUsmj11uuTgS6S8ojro0LMVRlwAtm84PjJYZxOVyeFPnEqCF0+mjFhrFxZLoo1HDO3c+NCLU6SKPRkpoqOQ90qcLMQKoiQrVr7lyhUh81danj0Zt04S0BX00IVkremulj0aPU0LaKi7FUds4RFcc3bL9e8mtdTOdVPOd2tiohwpvQ7o1lAbth8nmJSM9p4Yu6GWLPy/PPfWwIMLPaayE9PantHM5tnUaPTmTIFAhHb6dipuoxfnEw/d69ocGT++We00OHz0hP+7+M0xd0SeK1ZY1Hww29TYRaegIiV9//5sR+8roOiZqxKqTan3+wiUT+YhoVqRGO+PipStmH6WKPWsiYJ0xee4qExmL8/SNHL1fywQglR0DfEZOWWzEWDSh2r56gom4xDkf+Oeo4QZxdLSKp4s1NR4p44hqxYhIHN357a/acGqnaYKFgTWi8/uOjyaYfcSmOIr9V2vaT4q88KQRUsH6TS0j4ETARnTdntG09dY9xskLzzwiTz+uHeAj6Va/U4Xb9Zt3yui+odGh3sMRQ33FUaTVh8cTUb3RWR+OgYjXl7UOaOOab4c55phpS42wC4E3pusKTxz1Fne7DppmIpSr+0Ts2ub/cb0eiqMuCVMcdQnQsun8wGiZQVwuhzd1LgFaOJ0+aqFRXCyJPhoWHlLkjx7V1HhtmrRXa4YeUFH0ZHgp8tluqBgqkv+mGJo1a2CiQqNjavpodCglnG3oownHVtFdKX00uqQSznYUR7XBkE9DJqSM//zbPhnes7FJT+6jqduo54gGQUUrtpSpQ9vJY1qL86g2FELNzclD2ujf27MmvRh1OXNqBOJ4TaP/fOcPJjoUNRmRSg2hDHNqNO8vQ7o30jqkd5j9De/ZxESiIl29ba/xpqs4amKiQRCiIiGuIvqxda9xphnUqdPnTLf6acPbyz26j3Z9Jsgdt2czka3eI6K0ejQAev3ddvJmiRekltbvRB3RgypqIt2/fKmXVUwtampwtqhb0XSuX/vpDoFwOmdMF8Ojdc+xZu1NVIB7U2uG1tTmP4gqRaMhCKfeNUfTpFJhTwXUQV0ayDNPPhihOIpIVwiAOF9Ef6Ku5dpPd5qoXO9u8LEROQpGiJRFxCOiLMG3Qt3uRihFg6oTp85qLdM50lPtjbIDp8+ck0Y13jJoIQSCeUE9l8jEUdQcRT1V1OHMd+ftJtp2pZZJ6NTsPU+kqK84OqBzvQh5RrQ+3+ZTX371o6CzfKv6leT1IqG1V1Hfdo3acNm0Pio6X47xurBO7+vBV9xFXVZc74hyRqQwasGiOZYTaZxw3g3drZTiqDt+QnHUJUDLpvMDo2UGcbkc3tS5BGjhdPqohUZxsaSk7qPa/FQOHoIYerOTPFLkL4VNkUcEaO7ciAzVFPm8QSYyNE0ae8RQX/PTR104hIVTk7qPWmgS10uij7pGaN0Okqo4CoHxlQotjD0Q8ehEW25YMNQ0NoKwiHTuGyE3TNfy7q1qSI5smU09xZFTPjT1RhGVWU1ToVGTFAMRobMXr5dLGvX46EN3m4ZMSP9GLc5uKqpt3vatikbJTVQfal1ibNn+g0kN/1ejF9HlHdGkaGaDAUESnenx8DND+rQmjR4RixgQLIfovIuXr5io1R6ta5h1e4/Iao7uP3REhkyYL998v0dQAgACYbk3CpuUekSTjoPYpXUjEc34zlvFPN3qsRasoWPTd02d0t+0a3k3Tcf/W+td5rszZ7jd6iGeoXESxLnXqrQ2grFThsA7khTp5mO1Zirsccftt6kYXcM0/IkLcRSc0HQJqfRdWlQzzaEQHXz4yAlz/jUqlZDKaleI3p0HTJHfNKI2SEsZPPrgXdKnfW1TUiEycRQCudMV/pLaCKIhmlAVePT+CMVRiJAR8YxofeG9oUBIHzdzmYkShehcWOvZtm5Q2Vy/GP6sy/t6EAkKUxYA+5w0Z6UsW/u5aRQAjoV6AAAgAElEQVSG+qN92tfxHM+6N704WhDFUZdgKY66BGjZdH5gtMwgLpfDmzqXAC2cTh+10CgulpTUfPT8hdDGSYgKRXToP//cmiKfVoVPNEzKm0eF0Lw3NC1QU+STuYAc4Kn00QADj+PDJTUfjWOcVuyePmqFGWJ1EUlJHI1VcNwZCZAACXgRoDjq8nKgOOoSoGXT+YHRMoO4XA5v6lwCtHA6fdRCo7hYUmL30aPHgrV5koSKoSqKnjh5axf52zQlHtGg+fKhXqhIttt8Coq64BsfU+mj8UE97o6Z2H007sjZu2f6qL228XdlFEf9Jcd5JEACJPAfAYqjLq8GiqMuAVo2nR8YLTOIy+Xwps4lQAun00ctNIqLJSUmH9WMNjn4d5DWCf0vRf7ixbBiaLBGgN6hkaD5NEUekaH5NEI0bVp7U+T9MS191B9q9s5JTD5qL+XArow+GljegTgaxdFAUOYxSIAEEjsBiqMuLUxx1CVAy6bzA6NlBnG5HN7UuQRo4XT6qIVGcbGkhOyjED5NF/n9IaZm6CGkyKtA6j1QGzTPnRBDgySPpsjn0dqhCSlF3h/T0kf9oWbvnITso/ZSjd+V0Ufjl39cHJ3iaFxQ5T5JgASSGgGKoy4tTnHUJUDLpvMDo2UGcbkc3tS5BGjhdPqohUZxsaSE5KPHj6sQqg2T9u8V/Spy/Lh2SvIZWTKH1gtFF/k8miqfI3viigqNjqnpo9GhlHC2SUg+mnCoxu9K6aPxyz8ujk5xNC6ocp8kQAJJjQDFUZcWpzjqEqBl0/mB0TKDuFwOb+pcArRwOn3UQqO4WJKtPooI0EOaIr//YLDWCg0xEaIXfFPkVRvNlTO0XijE0Lz5QrSTadITQ33NTx914RAWTrXVRy1ElWCWRB9NMKaK9kIpjkYbFTckARIggQgJUBx1eXFQHHUJ0LLp/MBomUFcLoc3dS4BWjidPmqhUVwsyRYfvXxJo0K1e/xeFUJRMxS1Q1FD1HukSnUzRT6f1grVVPk777whyZO7OPlEOpU+mrgMa4uPJi6q8Xs29NH45R8XR6c4GhdUuU8SIIGkRoDiqEuLUxx1CdCy6fzAaJlBXC6HN3UuAVo4nT5qoVFcLCm+fBRd49E9Hl3k0U0eXeV9R2ZNkUe90Pymi3xoinzQrc3mXZx94pxKH01cdo0vH01cFO06G/qoXfaIjdVQHI0NitwHCZBAUidAcdTlFUBx1CVAy6bzA6NlBnG5HN7UuQRo4XT6qIVGcbGkQPjo9Rsih7VZ0n5EhqoQClH0/PmwKidET6TIh4qh2kBJ0+TTp2eKvD+mpY/6Q83eOYHwUXvPPnGujD6a+OxKcTTx2ZRnRAIkEHgCFEddMqc46hKgZdP5gdEyg7hcDm/qXAK0cDp91EKjuFhSXPjopctBclAbJ+3dd7OL/KEguXot7CJTpryZIp83yESF5tEU+RQpXJwIp3oI0EcT18UQFz6auAglvLOhjyY8m0W1YoqjURHi6yRAAiQQNQGKo1EzinQLiqMuAVo2nR8YLTOIy+Xwps4lQAun00ctNIqLJcWGj548HaR1QkNT5BEVevRYkIT4BH1mzIjGSaIRoaHd5HPmYIq8C7NFOpU+Gldk42e/seGj8bNyHjUiAvTRxHdtJCVxdP+hf6VUtQ7ywyfTjSGvaYHwEZM/lOnz18jny0dLlkwZbjHw2OlLZcGKT+WzpaPMa/sPHZFO/SfLL3v2Se6c2aRXu1ryxMP3hpm3Y9duqdlygKyc1V/uzptLP1eEyMgpi2XZ2s/l8uUrUqnsq9KyXsUwc06dPidvVGsvzWuXl8pvFolyfcMnLZJ1m3aa7Z545F7p3qqGpEmdUnb/vl96DZspJ06dldSpUkrrBpWkcKHHbjmvsjU6SytdwyvPP+F57dDhY1KyalsPn4iudvD6c/8/0lvPPa7Gj7/+JW16jpe1Hwwydlr7yQ4p/dpzYQ7Xc+gMSZ8urWEZHBx57SJwadFtjNlfdMcTr9XRGvKhReRv3AjxHOPBe/PJokk9orsbs93zZRvL/PHdJG/u22M0L6KNC5VqKMtn9JWc2bP6tb+nS9aTVbMH+D0/vnn6ddJxPIniqEvAFEddArRsOj8wWmYQl8vhTZ1LgBZOp49aaBQXS4qpj95Aivy/oSny6CC/TwXRc+duTZG/XcVPiKAQQ/OpKApxlCMwBOijgeEcqKPE1EcDtS4ex38C9FH/2dk6MymLo007j5QH780rE2avMOKnrzi698BhadxphJw9d8EjjlZr2ldeKPio1K5aSjZv/Vb6jZoj6+YNkRTJkxkTX7lyVd5p1FuOHj8lM0Z2NOLoyvVfyqQ5K2X6iA4qsAUb4bRh9Tel5KvPeC4LCK47vt0tdXW/jjga0fogik6eu0pmj+4sKVMklza9xsm9+XNL45pvC0TPBtXKyhtFCxmhtHqzfrJp8QhJmyZ1mEvQjTh68dIVIxqmT5fG1WV9XWsXJUt2a9127BSCKLjDJhCiIQZPGtzGczyI1GD81GP3R2sN/oh5zo4hqoPXtx9PidaxwtvINnH0+Mkzhm1UonJEJxyXPL2FaL+Bx8NEiqMuoVMcdQnQsun8wGiZQVwuhzd1LgFaOJ0+aqFRXCwpKh+9ckUjPA4Ea0SopshrqvzBg8Gi9yxhBtLhkRafV+uF5jVp8jckZUoXi+JUVwToo67wWTc5Kh+1bsFcUJQE6KNRIkpwGyRlcRQCD8TRR4vUDFcchYhZuWwRI4BCPIWghMjKravGSfJkoWJohbrdpX3jd6TgEw+anxFpigyU9Z99JSN6NTHiaOcBU+Se/HdIrSpvmG0WLP9Etn79s3kdA5Gm42YuMwLnfXfl9oijEa1v3MzlckLX0qVFNTP//+ydB4AUVdLHa5ecFAExndkznAenmM9wpjMcqKiAoqJEEVEMRAmSJUhGBQREUAwoBgQRM2fOWQ/DZxaVnDP7Vb3unu1NMNuvu6em998eNzvTL9T7Vddu93/qvTfziRfpg0+/ppF9O1D9s1oXGIuIciKiHrz/3gWuzZ2Jo9K3CLb/OukobnsRC5GrqNdNV9Epx9czmbaSObpLjaq0hdce6tnpKtO2ZL+e1exWI8YKq74jptHS5auMMNuz05V09N//Sl9+/QP1HjaVx/kX+mPpCprMgmfv4VPp48+/pW38LXYDLiPZuN/+8KvJHJ09ZQBdeE1PWr12HdU/4mCaOqobi9KfGLF0y9attO/eu3MGaxvavXbNIrEnAvIjT71Mu+5Sjc49/Xh6cv5rqczRSQ88Q3Oef4M3y8yhExv8zfiwAgvNxR3FiaMl1f/2+1+pz5330e9/LqO/7FWXhvRsx6+7m8zRG1tfQg+zPUtZ1G152Xl07VUXGAG7JM4iEo6/7wnOEH7XmFXv8IOozy1XG1Hanzkq5+++/2nayjzq1NqV+nVpZa67TXzT24dZf/j5N7Tf3nWNkCzZwXfc1o78maMaeMqXEHJNSHa1ZCSLr/tzBrQI4yLgNjz7JLr+movoznseMePyrv1Va9bRGZfeTC89NopWrV5X7DUnY+4x+F6+FleyqL+dml5wOrW7slHov6shjloihThqCVBZddwwKnOIpTl4qLMEqLA6YlShUyxMKhyja9Y40+MlK1SmyP/xZ9Ep8rJR0v68Tuj+7i7ye+4h06QsjEDVUAkgRkPFmfHG8Hc04y4I3QDEaOhIM95glOLoH1s30FcbVsQ+xj0qVKEjKu9WpN/C0+q9AsWJoyLSvPPhV9St4+V0EWcNijj64WffmCnrT00blGq7y4AJdEKDI6hpo9N548bfzdTtWZP6UpNr+6XEUREDD9p/r5Q4+vSCN2j6rOfoiakDjbjYrH0/GtmvIz3EIqdfHC3Jvvc/WWTsENGzapVK1KnPeDrzlKONDW1uHU7//texdDlPzf/ws6+NKDTvwWGpzFavzZ2Jo998/wtd0qYP3TPkVp6WX4+efekdFmFfoJl3906Jo00b/Ytu7X8PvfjoSNOsiI8vvvYB3X3HzXRp29vp8sZnGps++9/3JFmwLzwygr5nRldcP8AImuefeYJZGmDWM6/QlBFdjag8cuKjdNapx/AX1ZwR606rlzKz5y00maMitja6+jYee08jpt3/6HMs/n1N4wZ2KuDv7378ja7sOIjm8tIGtXfbxXD45MvvjDj68usfmuUUZCwi3N7c9y464egj6KpL/13stVpYHC2p/pWXnE0Xt+5DN7S+mM7mMUx9+Fm+hr40dos4+p8zTzQCs1wnjVv1prfnTaBfFv9ZImdhPvXhecbPsmRC90GTaA+eRi9LJXjiaB4LqBezn+Sakyn7s555lZ5gVo9M7GtE+Lkvvs0Zy91ZTF9juJ907N+N+OiJoyLyZ5qnQL+Jr+HlK1fTZL4OZDkIWTJBrod+XVrS2nUb6LLr+lOPG64wvmzfbSS9wgK82C6xNO/Ftwzjkq65YXc/bETj666+0GQj9xl+n2FQo3rVUH83QRy1xAlx1BKgsuq4YVTmEEtz8FBnCVBhdcSoQqdYmFSxXHl674McWvTddhZDiVazOFr4kCnyZhf5AyRDNI92q4kp8hbII6+KGI0ccawd4O9orLhj6QwxGgvmWDuJUhx9cPnX1OL7l2Idj3R2Va1D6YEDzyrSb7riqGRAXsXT50WAk8MTR998/3MaO3k2PcpClHdIVuihB+9L1zQ9l1rfMozaswAjQpuIj17m6LyX3qaJnO0p0+wlC06EIMmsnMdrPt5z/1NmPUsR1AaNeSAtcVT6lqxMEYYqlC9PR/x1PyMuVqxYge+JfjbT9iUjcv2GTTSiTwcWGxsUYZGOOCri4rvPTjR1pd2Ot42mF2eNSomjIjCdzZmid7EYKhm4kv13HmdoHvuPw+iCa27jupNS07ZFAO7a4XKquWt1uqx9f3r/uXvNORFwO7PA2q9zKzrxmL9RJR6DHP41R/3iqIz5WeY5aXhnU279ho10YqPr6aPnpxSYoi/C4GvvfMa23WTKvf7uZ4aviKMiVh+w757UlpcwkEMyJ6c9Op/u52UPijsKi6Ml1b+jR1sjVL7DoqccW7ZuY/F7ixFgRRwVH/3t0APMuZPY5scm96cNGzcZEbc4zt0HT6LDD96PWl1+fmoMkjEr2bSeOPrGu58bQXrC0FtMGcmqbHBOO3qbs5sl81LWw/VEXxEct3LmpF8clS8AMs1T7JYvFY487IBURueZTW+hcYM60d8PO9CMS8YtYxOBVMRceZUsZhHdzzylgcn+Lemaky81JHa7XHcZ93Fg4KUEir04fB9CHN0ZoZ2chzhqCVBZddwwKnOIpTl4qLMEqLA6YlShU3ZikmR/Ll/BGyUtyaFly/Jo+fIcno5EtG598QvvH7C/bJ60nTNDc4wYWrkSxNBs8jpiNJu8tXNb8Xd054yyrQRiNNs8tnN7oxRHX1j9C93x+wc7NyLkEmfX+Av12uuYIq2mK46K4Hk8C5wXnXsyrVi1JiWOfsTTk0UYE1HTOzr1GWc2PBKRUjI6B3VvY075xVERP8dNnU3zX36H13msTmec3IBeefMjGtrzWiMMPnxPHyNspiuOPvzUS5z9+BGNHXiDqTf87keMSChTrkU46nvrNUY4kqnvrW4eakTewhsBSeZipzaXGGHJO3785Q+6qJWztqZkjl7bdQS98vgYc9r/3r8h09C7HjLT1q9peh6dxYKWiKff/7yYmncYYLIcvUNEwNtvucZk0LbrMsJMvfcOET9lTDKFWtZh7XHDlfTdj860ehEz/eKo9H33/U+yyJq/eZZkFkqGqGQHeoes8SoZmjKFXA7JXu3KWb7SXoceozmL9NvUOqzbeTp/7d12LXGTpcLiaEn1b2fut9w+3jAofBRec9R7L4JfSZyFk6wde/H5p6bG0Kn3WOMTTxyV9Wz/78fFZvq+dxxz7rX05H0DacDoGXTROSfTBef805wSJj//tqSAODqfs1MzzVNsE3H05OP/bjKN5Tjq7DZmwyhZkkCO+x55lhZ9+zMN692el6B4mn7mNWeF9+mX3kTPc0byz7/9WeI1J18OyHUzj7NoJTtV1guWLzPCPiCOWhKFOGoJUFl13DAqc4ilOXioswSosDpiVKFT2KQlS3NpBc+6W7KUWAAlFkOJlvKu8cVlgvpHUKd2Hu29J9He+zhT5ffhVxzZTQAxmt3+K2w9/o4my58yGsRoMn2avFEVP6J0xVERrrw1RWWn+RWcSVqrZg0jMl7S5nZ6Y85dZuqvHA1b9DBi0zSZ3s1ZkOXctXpWrl5rpu0O7t62wI7wUkeEGhEiD9hvT5o0Y05qrct16zea7McrLj6bbm7XJDWIwtP+b+g5lk476R/UjNdOlENEW5k2Lpmq13UfRQufGJuq27bLnXQhi2MXskjmP2Rq8knHHGnWvvSOl177kEbwtPb5M4elLY5KVt7Qu2ZyFmYjeuaFN2k8Z/v9vmS5EZS9DEp/v4VFV/+51TzluXO/e4xIJtmnxYmjIgY+v/A9Gj/YyQgt6XiEM0ff4GxRr9yrb37Mdj5kxFGZVi3LF1ydpkBWWBwtqf5vvLaliMvvzJtoshNlyYSfFy8x638GEUclc/TQg/alNs2dtWpfe+dTGjtlNj3OGaf+zNEX/vseTRzmZNLKZlkyZV4yUXsPm8Jr4R7B15OTRS2ZpFs5m9WfOfoer3ebaZ5im4ijIug34aUa5JDM0bEDbqR6Rxxk3o+cOMtsAtaN14YVf8hav307tzRT6u8ZcssOrzn/NSJx1/LmIWbpBy+Ld4cXUilOQhwtBaziikIctQSorDpuGJU5xNIcPNRZAlRYHTGaGafImkErV0nGJ2eBsvgpmZ/LlstrDq3iz+V8cQfPCKOavFN8LRZBa9cmqsP/anMSQu1aeVSTp8fvWo0XzudCa9YX2mUpM8NEryEQQIyGAFFRE/g7qsgZIZmCGA0JpKJmoswcVTRMY0q64qjfbn/mqHzepvNw3tjmMDP9VzbCEbFKxERPTPXq+jNHZY1KEetEqJMd1lveNIRG9L3eTHn2H+lmjsp6mbKm5ihep7RC+XLGhm8503MwZ0lK9ubUkd2o/t8ONn3JGpiTR3Thqfe82LrvENuHjH/ItFHv8AONGNp14ESTuSeCabqZoyIen92ss2n/fM5ybHjWiaYXEa9kOri8X75yDff1IPXnjYJkcxx/puSDs1/gjXTW0vUtG5t6IjzK5lHHHX14ShwVfpMfmkcP8RqhshyBZL3KeqH7/2UPkxH6DG+s5G0K5Q1RNjqSrNk50+9gYXsXk6Ern5k1R9/4iCbIMgc8jb5a1cpmnU7h6GVoFr5ui6w5WkL9xuedwuJob2rF/KStBx5/3gia3pqjj0y4PZXBm07m6HOvvEuyqdSDd/U2yw107n83Z97ubTZ28sRRsVWE6Mfu7WfalnVhn3vlPSPkS7blG+99zptedTXXgqzbKVnOhdcczTRPGUNhcVSyXrfzEgCy5qhsuiRLMcjPMn1eDlmmQTYlu6ltk1RmbEnX3O13TuMs8FPM2rmSqduE18Md0uva1JT9sH5PQRy1JAlx1BKgsuq4YVTmEEtz8FBnCVBhdcRodE4RgVM2RDICqBE+nSxQEUGXr8zlG5yS+65RQ8RP/sfCZ53aOUb8FDG09m7bKdfZDLbYAzEanT8z1TJiNFPko+kXMRoN10y2ihjNJP1o+i6r4qisK3p6k5sNVMnw83Yql82F/NOzC4uji/9YRpLR98WiH3in9Lo0mNeZlLUSCx9+cVTWnrydRb+Fb39spt93bHVxKuvTX88vju7IPlnDctCYGWYafy5nqsr6mZJFt1fdWmb9zLFTHjfrjUoWaosm55jNmYo7RBSULNbFfyyl3evsRpddeIbJUpT1StMVR6XdO8Y9SI/PXUivPz0+NVVdprT34zUuf/9zuWmvZbNz6TK2o3C7wleWMfia1zTN4bGIUCtLE8iSAF7mqGzCdDkLe7KbvUwp93ZX37hpsxE3ZZOjBvUOLTJE2eld7JLd3WVsM1is9DaPkinmsumWZFIKv0Gc4Vu3TtEd76XR4narL6n+1//3C/t6Kv3G18n+f9mzwG71pRVH/bvVy322ZNPeduOVZhOugrvVv8dT458y1/Hee9Q2IqJcm7L5kAje37BNfz1oHzqM1y8V3gO65m/ItCcvfaCBZ2FxVATR/iPzd6v3RHvPydMfW2A21XqNN0oT/8pR0jUnArpsYCbZ3Ll8LUomtcRg2AfEUUuiEEctASqrjhtGZQ6xNAcPdZYAFVZHjNo7Ze06XvuTBc9lsvbn0jzzuoynwMu6oFu3ltx+taqO+CkiqAigkg0q0+JrsRBagRNAgxyI0SDUdNdBjOr2T2mtQ4yWlpj+8ohR/T4qrYVlSRwtLRuUB4FsJyACq0zxl+PuaU/SBhaUZWOibD9kk7OXeCMqyXzWckActfQExFFLgMqq44ZRmUMszcFDnSVAhdURo+k5ZdNG3gDJZH46myAtXZ5rskElE3TT5uI3QpKWK1d2BFARPHevwwJoLV7gnt/vXiePNwxIr+/SlEKMloZWdpRFjGaHn9K1EjGaLqnsKYcYzR5fpWspxNF0SaEcCGQXAVk+4M57HqEnpg7kJay20xXXD6IbWl9MZ59adLOybBqZbMB11Q2DzQZkx9QvmjGcqbFAHLUkD3HUEqCy6rhhVOYQS3PwUGcJUGF1xGi+U7bwMp0yBd5kgS7L5Z85C9R9v2FDyQIoL3lkpr3XMut/bs+fBl+HeJpPvBsiIUYVBpmlSYhRS4DKqiNGlTkkBHMQoyFAVNYExFFlDoE5IBASgW28ZudgXvLg1Tc/MssvnHv6cSZrVJY5yNZDNg3rc+dUs1REpzaXqhoGxFFLd0ActQSorDpuGJU5xNIcPNRZAlRYvazFKG/q6AqeIoL6psGzILp2bck3RuV4nU/J/jRT4PnVrAPqrglavXq8AuiOLiPEqMIgszSprMWoJS711RGj6l1UagMRo6VGpr4CxFH1LoKBIAACWUAA4qilkyCOWgJUVh03jMocYmkOHuosASqsnsQY5S+FaSWv92nW/vTtBC/vZSf4kg7+Apl24x3fRQQ1u8B7O8GzCLor7xCfDV8qI0YVBpmlSUmMUUskWV0dMZrV7ivWeMRoMn2avFFhRCAAAiAQL4EyJ47K7nQ97riXd6f73uwAJruaebvTTZ45l6bPWkBbOVXnP2edSL06XWV2iPvp1z+p55DJ9NU3P9I+e9ahAd1a01FHHmI8BXE03gs26t5wwxg14Xjbx0NdvLzj6C1bY1R2qFzJQqc37X3pUncXeBZA5XPevLPYQwTOmix0yuZHIn4aEVQ2RWJBtCYLoyKQZvOBGM1m7xVve7bGaPI8Ec6IEKPhcNTUCmJUkzfCsQWZo+FwRCsgAAJlm0CZE0ev7nQHnfHPo+mqJufQ7HkL6aPPv6FhvdrT2x98Sb2HT6XpY2+jXWtUow49RrNAegI1b3wWtbhxMJ18XD1qc0VDWvjWx3QHr/uw4OERvDtvOYijCYsf3DAmy6F4qEuWP2U02mN09Zp8AdRshMRrgMpGSMt5QyTJEC3pqFHDmQIvwqeZAm+mxLMIutt2yuUp8kk9EKPJ86z2GE0e8WhHhBiNlm8mWkeMZoJ6tH1CHI2WL1oHARAoGwTKlDj6829/koijL80azdk2BacqDhg9g/aqW4vaXdnIeP4VXvRWskhH9r2ezruiK7019x4qL4u48dGkXV/q3rE5HXfU4RBHExYnuGFMlkPxUJcsf2oRR9eucwRPswaobIK01JkSv5z/bdlaMvNqVR3x06wDygKoZIPW4X8yLb5C+eT5Kp0RIUbToZRdZfB3NLv8tTNrEaM7I5R95xGj2eeznVkMcXRnhHAeBEAABHZOoEyJo7Iz1oNPPG+m07/53uf0F37tc8vVdPD+e1ObzsPNjln/Pu1YQ+37nxZTq1uG0ah+HWnAqOn01LRBKZpdBkygExocQU0bnU6Ll2/YOWWUyBoCe9WqAp9mjbd2bmj1yqw48bzktRt4W28ciSAQV4xu3CSbH/kF0FxnV3j+t4nPlXRUriwbIDmbIe1eRwTQ7UYQ3b1OHlWsmAgXhDoIxGioOFU0FleMqhhsGTACMZo8JyNGk+nT5I0KIwIBEACBeAlEIo42bNEjrVFs3bqNp6ffmVbZMAo9Of81kgzRicNupeM56/PB2S/QE8/+l568bxBd2XEQtW9xAZ124j9MV7/9vpQat+5NYwbcQGMnz6ZHJ/VNmdBr6BQ69OB96Zqm55KsI4cjOQRkfT/4NFn+lNHAp8nyaVj+3Mya+e9/5tGSJXn0+xKiP/jnP5fmmde160pmVolFzj12z6Hd+d8euxPtWTeH6rIQuge/Vq+WHNZxjMTbNCosn8ZhM/rYMQH8HU3WFYIYTZY/ZTSI0WT6NHmjwohAAARAIF4CkYijj89dmBrF8pWradYzr9KZJzeg/f9Slzc72k7f/7iY/vvOJ9T2ikZ0xcVnxTZiyRy9Z/pTNHvKANPn9u151OCctvTK7DHUdeBEuuT808w6o3Is+u5nat9tJI3u35F6D5tK8x4YmrKzU59xdOoJ9U3mKDZkis19sXSEqUaxYI6tE0wHjA11bB2VNkZ5fz1azut+LpWd4L1p8PxeMkDXri05A1RWUZHsTzMF3uwGz+uAumuCVq+Ob8XCcjhiNCySetopbYzqsRyWFEcAMZq86wIxmkyfJm9UGBEIgAAIxEsgEnHUPwSZrn5zu6ZU7/ADC4zsrfe/oKmPPEtTRnSNbcQieHa8bTS9OGuU6XMbC7UNzmlHrz89nsZNnc07Alenjq0uNueefekds2HTiL4d6OxmnemNOXdRZUkX4kMyYwfyjvUN6h0KcTQ278XTEW4Y4+EcVy94qIuLdHz9FBejstHRypXOmp9Ll/HUd/knU+BZBF21OqfEzGHZ6X033vHdE7LIhR4AACAASURBVD3NBkjumqC78g7xXsZUfKMrez0hRpPnc/wdTZZPEaPJ8qeMBjGaTJ8mb1QYEQiAAAjESyBycVTEx7d5M6OKFSsUGNmatevpX5fcRB8+PznWEV/MU+Vb8E71F59/Kj3w+PP0zAtv0WP39qMPP/uaunH26IxxPalatSp0bZcR1OzCM+jShqeZ9UiPqX+Y2axpwavv0tgps2n+zGFmgyZkjsbqvsg7ww1j5Ihj7QAPdbHijqWz7Zsq03ufbjbrgS5f4Qigy1eUnAEqRtUUAdTd/b2OCKBmF3hnIyQcmSWAGM0s/yh6x9/RKKhmrk3EaObYR9UzYjQqsplrFxsyZY49egYBEEgOgcjF0Yta9aKzTz2G2jRvSFWrVDLk1m/YSBNnzKFX3/qE5tw/OFaaX//fL9RzyGT6ZfESsxHTAM4AlVc5pj+2gKbMnMu7DW+jxuedYnakz+HUocV/LKPugyfRF4t+MJs5De7Rlo487ABTB+JorO6LvDPcMEaOONYO8FAXK+5SdbZpI2+UtZ5onfzj6e3reI3PdRv4szWy3ie/X5/Hn/Nn/PN6/nxnR40aTgZord3ITIHfffc8kxVal19x6CWAGNXrm6CW4e9oUHI66yFGdfrFxirEqA09nXUhjur0C6wCARDILgKRi6MffvYN3dL3Llqxao2Ztp7Huy6sXL2WqlSuROMH30QnHH1EdhErZC3E0ax2XxHjccOYLH/ioS5ef65aJaImfwG2nkVOFjaNyLluu/vqCJ0igq5es3Oxs7DllXgX+OpVJeMzl6pW35ZaA9QTQMuXj3es6C0cAojRcDhqagV/RzV5w94WxKg9Q20tIEa1ecTeHoij9gzRAgiAAAhELo4KYsnE/IhF0j+XrqDNW7bQ7rV342nqf+VM0spZ7wGIo1nvwgIDwA1jsvyJh7rg/pTdwzdIdieLnOtZ1FxrMjn5dR2/mvf8ubyXzE8WPDdtKp3gWYHFzGrV8qgq7+5erSoLn/xald/XqJ7D7+Uc/+ONj0QQlXKyPqgciNHgPtVYEzGq0St2NiFG7fhpq40Y1eYRe3sQo/YMtbUAcVSbR2APCIBANhKIRRzdytsFf/jpN/Tr70vMWp9yrFu/kR+AIY5m40WTZJtxw5gs7+KhrqA/N23mKepmGruT1Sk/y+vatY7gKVPZZQd3U4azP0UgTfcQ8bJKFUfkFDHTiJ0sbIrYKaKn97kRPfl9oWWo0+0G4mjapLKjIGI0O/xUGivxd7Q0tPSXRYzq91FpLUSMlpaY/vIQR/X7CBaCAAjoJxC5OPr9T4upQ4/RtHT5Ss5C2kxfvHo/i6RLqUnb22nS8M5U/28H66e0AwuROZrV7itiPG4Yk+XPpD/UyS7t3lR1I3ZyBudaWbuTszudKe3ueZPdmUNbt5bOv95Udk/QlNfqnOVZjQXP6ixwOp9LpmeeEUbj2N0dMVo6H2ovnfQY1c4/CvsQo1FQzVybiNHMsY+qZ8RoVGQz1y7E0cyxR88gAALJIRC5ONq2y51U/4iDqGPLi6n+Wa2NOCrHzCdeoGdfeodm3t07q2lCHM1q90EcTZb7iowm2x7qzFR23nxIsjZF4BRx04icnNm51nzmE0NZ8JRNjUpzyLqcImrucCp7SvTMo3LuVPbS9BF1WTzURU043vazLUbjpZOdvSFGs9NvJVmNGE2WP2U0iNFk+jR5o8KIQAAEQCBeApGLoyc1up5efWIsVeI5lEee3jIljso6pCc16kDvP3dvvCMOuTeIoyEDzXBzuGHMsANC7l7DQ93mLfmCplmrkwVOWcNzDQuezrR257y8ijC6nbNB0z0kU1OyNmX6enVen7NaVc7ilCnsbman+VzEzupOuYoV021ZbznEqF7fBLFMQ4wGsRt1SiaAGE3W1YEYTZY/IY4mz5+eT5M5MowKBEAABOIjELk4+s8LOtLT9w/mTZhqFhBH/4+n27e4cTC98fRd8Y02gp4gjkYANYNN4qEug/Aj6DqKhzoRL70NiWSDIrM+JwubazjTM3+DImfXdjm/Jayp7DJ93WxQ5K7hyYJnFd7BPY6p7BG4JnCTiNHA6FRWjCJGVQ60DBmFGE2WsxGjyfInxNHk+RPiaDJ9ilGBAAjETyBycbT/yPvp+59/52n1janlzUNp9pQBtOi7n2nijDn0z2OPpD63XB3/qEPsEeJoiDAVNIWHOgVOCNGEdB/qJGPT2aDIXavTbFhUeFd25/3GUk5lL1fOy+p0NiIy63aaV1m3U3Zo99475zVOZQ/RJdZNIUatEapqIN0YVWU0jNkhAcRosi4QxGiy/AlxNHn+hDiaTJ9iVCAAAvETiFwc3bhpM42/7wmaNecVWr9hkxlh1SqV6fKLzqQbWl9spttn8wFxNJu9V9R2PNQlw5+y4/oGFjFzt+fSug25tGT51gJT2SWrU8p4U9pLO2ozlZ0zN2vI+p1V8qeyG/HTm8ruCp+VK5Viy/fSGlIGyyNGk+V0CC/J8ieEl+T5EzGaPJ/i72gyfZq8UWFEIAACIBAvgcjFUW84ebzTyNLlq3gKaA7VqbVrvKOMsDeIoxHCzUDTuGHMAPRCXcqmRJs2sbjJ36Vs3MD/WOSUV3m/Qd5vyOOf+bw5557fyJ9JOf5X2h3ZpftKLGA6O7Hzlzdm6rqTxVkdU9kzf0EUsgAxqs4lVgZBeLHCp7IyYlSlWwIbhRgNjE5tRcSoWtcENgy71QdGh4ogAAIgkCIQuTi6mXcjeWzuQrrykrNNpy+/8RE9Me+/9Je9d6dObS4xWaTZfEAczWbvFbUdN4zh+FPW2dzIU9U3iHhpRE4RLl1xk4XN9SxwbmJxcz2f22Q+5/Ou+CnCqO1RtUoeVa4imxBxVicLnZUqb3ensuea1+qc9VmVsz/l3K67IrPTlnec9RGjcdKOvi8IL9EzjrsHxGjcxKPtDzEaLd9MtI4YzQT1aPuEOBotX7QOAiBQNghELo72HTGN/vfNT/TQPX3ox1//oEta96bLG59F33z/C+1VtzYN6t4mq0lDHM1q9xUxHjeMDhLJ3jQZm162psnKZBHTzdTcsGG7c57fr5cMThY0TUanyfLMoW2l2HG9uCuoUkVH3Kxcif/x9ydVROzkV3lflQXPyrwRkXyvYj7jc1WknJTnz/0rdeChLlnxKaNBjCbLp4jRZPkTMZo8fyJGk+dT/B1Npk+TNyqMCARAAATiJRC5OHryRTfQk1MHUd06NWnM5Mfp2+9/pbvuuImWr1xDF7XsSa89NT7eEYfcG8TRkIFmuLkk3TAWyN5MiZrOVHRnWnpearq6mZ4eYvZmLm9CVIWnqotwWblyjtlVPfUqYmblXOczVwD1xE8RPGWKe25uOBcCHurC4aiplSTFqCaumbIFMZop8tH1ixiNjm0mWkaMZoJ6tH0iRqPlm4nWkTmaCeroEwRAIGkEIhdHG5zTjt6dP5HK85bNl7a93Uyvv+Q/p9HWbdvouPOvo4+en5zVTCGOZrX7ihiv6YbRy950sjWdTE75Waahr5cp66nsTfmchU5znqer8+t6/rd9m51vRKRMZWcWytCswpsQGfHTfM5CqGRy+rI3KyjZZw0PdXbXgMbammJUI59sswkxmm0e27m9iNGdM8qmEojRbPJWerYiRtPjlE2lII5mk7dgKwiAgFYCkYujIohexjvT16hWhW4bMpleeXw07bZrDXrjvc9p2F0P0Zzpd2hlk5ZdEEfTwpQ1hcK+YdyyRaai56TW1/RvLmTW5DRT0fMFTyOCuhsRbdpst/ZmOc6+dDIynaxNZyo6i5r8mQifVau62Zve9HQ5n5rKnsebp2WN20o0FA912e/DwiMIO0aTRyi7RoQYzS5/pWMtYjQdStlTBjGaPb5K11LEaLqksqccxNHs8RUsBQEQ0EsgcnH07Q++pC4DJrDgs4k6X3cZNef1RmXX+nObd6W+na+hC885WS+dNCyDOJoGpCwqUviGcTuvnemtremtt7nRtzP6el/2preLurPDuiOKSn2bo5K7tqZkZVYy09FlurqbrcnZm97amyJqOmWdKezyc4XyNj0noy4e6pLhR/8o8FCXLJ8iRpPlTxkNYjRZPkWMJsufiNHk+dPzaTJHhlGBAAiAQHwEIhdHvaFs4x1aykkqGx95PF/4ux9+o0MO3Ce+kUbUE8TRiMBG2Oy69Tm0di3R6jU5tI5f1/Dr6jV55rMtm8vRytWy2ZAjim7mzE/boxrvju6sr8lippmq7mRvGmGzSsnZm1IGhx0BPNTZ8dNYG8KLRq8EtwkxGpyd1pqIUa2eCWYXYjQYN821EKOavRPMNmSOBuOGWiAAAiDgJxC5OPrSax+WSFzWHT339OOy2iMQR/W4b+UqR/Rcs9Z9XZ1Hq/lnEUDXrhMB1BFCS3v4szedDYZ82Zuyc7q7Nmfh7M3q1SFulpZ12OXxUBc20cy3h4e6zPsgTAsQo2HS1NEWYlSHH8KyAjEaFkk97SBG9fgiLEsgjoZFEu2AAAiUZQKRi6P/vLBjAb5520WwWs+CUkXae4/a9MyMIVnNH+JotO7byLuqrzViZx6LnixySpYn/+x85mR/yusGXr8z3UPW26zBwmX16jn8SlS9Rh7tUiOHqnOG5wH7VKT1WzY5AqhZixMCZ7pcNZbDQ51Gr9jZhIc6O37aaiNGtXnE3h7EqD1DTS0gRjV5IxxbEKPhcNTUCsRRTd6ALSAAAtlKIHJxtDgw63nxxgnT59CB++1pdq7P5gPiaOm9J7uwy27rfnHTiJ7u1PZU5icLoLKhUTqHbB4k09eN2MnCp7waAZRFz13cz6rvQvxzHi/vUHKLuGFMh3b2lMFDXfb4Kl1LEaPpksqOcojR7PBTaaxEjJaGlv6yiFH9PiqthYjR0hLTXx7iqH4fwUIQAAH9BDIijnpYGrfqTU9NG6Sf0g4shDiaD4dXScif0i4Znev4vW9qu4iekv25jqe4p7tRUXneVMgTO02Gp8n0lIxPVwjlz2pUc4TRMHZXxw1jVodjEePxUJcsf8poEKPJ8iliNFn+RIwmz5+I0eT5FH9Hk+nT5I0KIwIBEACBeAlkTBxdv2ETnX9lN1r4xNh4Rxxyb2VBHC12artkebLIuUbW8XSnuJdmartsNiTT2GvUEPHTyfKsIVPb+XUXnu5ejT+TLE9Z7zPOAzeMcdKOvi881EXPOO4eEKNxE4+2P8RotHwz0TpiNBPUo+sTMRod20y1jBjNFPno+kXmaHRs0TIIgEDZIRC5ONp90KQiNLds3Uqf/e97OvyQ/Wj8oE5ZTTtbxVGZ2u7t2i7rd6521/Ncw6KnCJ7ymVnjU6a2b03PRbm5RFWryvqdTranX/Q009w5y7M6Z3nK646mtqfXWzSlcMMYDddMtYqHukyRj65fxGh0bDPRMmI0E9Sj7RMxGi3fuFtHjMZNPPr+EKPRM467B4ijcRNHfyAAAkkkELk42n/k/UW4VeLNmA7cd0+64JyTqWqVSlnNVZs4aqa2u5sUedPYjeApYieLnjKlXXZtX78+/antFSqw2OlmeTobGXFWp2R5itjpre3Jr9VYGA1jansmLwjcMGaSfvh946EufKaZbhExmmkPhNs/YjRcnhpaQ4xq8EJ4NiBGw2OppSXEqBZPhGcHxNHwWKIlEACBsksgcnE0XbTdBk6k4X2uS7e4mnJxiaObNkp2p7OJ0Rp3t3ZP9DSfudPbN3K5dA8ztZ2zPGX6esEsT++9rO9JVKlivFPb07U/inK4YYyCaubaxENd5thH1TNiNCqymWkXMZoZ7lH2ihiNkm78bSNG42cedY+I0agJx98+xNH4maNHEACB5BFQI46e0LADvTNvQtYRthFHzdR2WbeTNy6S3dplGrtZv5MzPb1p7mtF9OQyvBJBWodMbZcsTxE1vSxPeZVMT28dT08Izd3Bru1pdZbAQrhhTJZT8VCXLH/KaBCjyfIpYjRZ/kSMJs+fiNHk+RR/R5Pp0+SNCiMCARAAgXgJQBy15F2cOCpT202W52pnzU5H6HSntrvreHq7totAms5RUaa2y87sslu7O5XdTG33sj7lHAuiVXgDo2yf2p4Oj6jK4IYxKrKZaRcPdZnhHmWviNEo6cbfNmI0fuZR94gYjZpwvO0jRuPlHUdviNE4KMfbBzJH4+WN3kAABJJJAOKopV+nPbKRVq/O5exO3r3dndq+aVP6U9urytR2b7Mi99WInv6d3Fn4FHEUR/QEcMMYPeM4e8BDXZy04+kLMRoP57h6QYzGRTq+fhCj8bGOoyfEaByU4+0DMRov7zh6gzgaB2X0AQIgkHQCEEctPdz2pi3FtrDLLr51PEX03CWHash0d1cAlQxQKYNDFwHcMOryh601eKizJaivPmJUn09sLEKM2tDTWRcxqtMvQa1CjAYlp7ceYlSvb4JaBnE0KDnUAwEQAIF8AhBHLa+GJ57bRJUrsvjprfHJr5INiiM7CeCGMTv9VpLVeKhLlj9lNIjRZPkUMZosfyJGk+dPxGjyfIq/o8n0afJGhRGBAAiAQLwEII5a8rbZkMmya1SPgABuGCOAmsEm8VCXQfgRdY0YjQhshppFjGYIfITdIkYjhJuBphGjGYAecZeI0YgBZ6B5ZI5mADq6BAEQSBwBiKOWLoU4aglQWXXcMCpziKU5eKizBKiwOmJUoVMsTEKMWsBTWhUxqtQxAc1CjAYEp7gaYlSxcwKaBnE0IDhUAwEQAAEfgdjE0ZWr1tIfS1dQJd5ZqG6dmjz1vHIBR8x4bAFd3fTc2Jzz7kf/o1a3DKVnZgyhg/bby/Q7eeZcmj5rAW3l7eb/c9aJ1KvTVVSuXC799Ouf1HPIZPrqmx9pnz3r0IBuremoIw8xdSCOxuayWDrCDWMsmGPrBA91saGOrSPEaGyoY+kIMRoL5lg7QYzGijvyzhCjkSOOvQPEaOzII+8Q4mjkiNEBCIBAGSAQuTj6829/UrdBk+jTL78rgPPk4/5O/bu2pr3q1ood8+bNW6j59QNpybKVdP/Y24w4+vYHX1Lv4VNpOr/ftUY16tBjNAukJ1DzxmdRixsH08nH1aM2VzSkhW99THeMe5AWPDyCKpQvB3E0du9F2yFuGKPlG3freKiLm3j0/SFGo2ccZw+I0Thpx9MXYjQeznH1ghiNi3R8/SBG42MdV08QR+MijX5AAASSTCBycVSExWpVK1Ory/9De+9Rm3JycuiXxUto2iPzafOWLTRtdI/Y+d497UnK4z2Tnv/v+zRmwA1GHB0weoYRattd2cjY88qbH5ks0pF9r6fzruhKb829h8qXK2fONWnXl7p3bE7HHXU4xNHYvRdth7hhjJZv3K3joS5u4tH3hxiNnnGcPSBG46QdT1+I0Xg4x9ULYjQu0vH1gxiNj3VcPUEcjYs0+gEBEEgygcjF0QbntKOXHhtFu+3K27j7jrXrNtAZTW6m9+ZPipXvDz//TjfffhfNmtSXmlzbLyWOtuk8nC6/6Ez692nHGnu+/2kxT7sfRqP6daQBo6bTU9MGpezsMmACndDgCGra6HSIo7F6L/rOcMMYPeM4e8BDXZy04+kLMRoP57h6QYzGRTq+fhCj8bGOoyfEaByU4+0DMRov7zh6gzgaB2X0AQIgkHQCkYujjVv1plH9O6bW9fSA/vb7Urr+tjEFRMc4YLdmwbP91RfSCUcfQRe27JUSR6/sOIjat7iATjvxH8YMsa9x697m/NjJs+lRFlO9o9fQKXTowfvSNbxG6poNW+IwG33ERKBGlQrwaUys4+imYvlc7iaHNm/dFkd36CMGAojRGCDH2AViNEbYMXWFGI0JdEzdIEZjAh1jN4jRGGHH1JX4FAcIgAAIgIAdgUjE0W++/yVllWxi9MhTL1OzC8+gA3n6em5uLv34y+/06NMv01WXnkPnnn6c3QhKUfup516n9z9ZRIO6tzG1/OJo2y530iXnn2bWGZVj0Xc/U/tuI2k0C7u9h02leQ8MTfXUqc84OvWE+iZzdM36raWwAEW1E6hRtTx8qt1JpbCvUgUWR3OINm3eXopaKKqZAGJUs3dKbxtitPTMtNdAjGr3UOnsQ4yWjlc2lEaMZoOXSmej+BQHCIAACICAHYFIxNEjT2+ZtlVfvHp/2mVtC97Yexx9+NnXVI4FWjlWrl5LNapXpcHd29Ib731GNXepTh1bXWzOPfvSOzR73kIa0bcDnd2sM70x5y6qXKmiOdewRQ8ayDvWN6h3KKbV2zpFWX1MNVLmEEtzMB3QEqDC6ohRhU6xMAkxagFPaVXEqFLHBDQLMRoQnOJqiFHFzgloGqbVBwSHaiAAAiDgIxCJOLp67fq0IG/btq3IWqRpVQypkD9zVETTbgMn0oxxPalatSp0bZcRJtv10oankaxHekz9w8xmTQtefZfGTplN82cOMxs0/bZsQ0jWoBkNBHDDqMEL4dmAh7rwWGppCTGqxRPh2IEYDYejplYQo5q8YW8LYtSeobYWEKPaPGJvD8RRe4ZoAQRAAAQiEUcLY83jreGXrVjNU1uLrs+5z551MuYFvzgqRkx/bAFNmTmXtvD6hI3PO8XsSJ+Tk0OL/1hG3QdPoi8W/UD77l2XBvdoS0cedoCxG+JoxtwXSce4YYwEa8YaxUNdxtBH1jFiNDK0GWkYMZoR7JF2ihiNFG/sjSNGY0ceeYeI0cgRx94BxNHYkaNDEACBBBKIXBx97pV3qf/I+6mkbNI4p9VH4T+Io1FQzVybuGHMHPsoesZDXRRUM9smYjSz/MPuHTEaNtHMt4cYzbwPwrQAMRomTR1tIUZ1+CFMKyCOhkkTbYEACJRVApGLo2c3u5XaXNGQTjm+HlWoUHSx6D13r5XV7CGOZrX7ihiPG8Zk+RMPdcnyp4wGMZosnyJGk+VPxGjy/IkYTZ5P8Xc0mT5N3qgwIhAAARCIl0Dk4uj5V3bj9TmHxzuqGHuDOBoj7Bi6wg1jDJBj7AIPdTHCjqkrxGhMoGPqBjEaE+gYu0GMxgg7hq4QozFAjrkLxGjMwGPoDpmjMUBGFyAAAoknELk42rHnGOp2fXPa/y97JBImxNFkuRU3jMnyJx7qkuVPGQ1iNFk+RYwmy5+I0eT5EzGaPJ/i72gyfZq8UWFEIAACIBAvgcjF0Rm8ydEDs1+g00/6B+21R23K4f/8R6vLz493xCH3BnE0ZKAZbg43jBl2QMjd46EuZKAKmkOMKnBCiCYgRkOEqaQpxKgSR4RkBmI0JJCKmkGMKnJGSKYgczQkkGgGBECgTBOIXBxt1r4f5ebmlgj5kQm3Z7UDII5mtfuKGI8bxmT5Ew91yfKnjAYxmiyfIkaT5U/EaPL8iRhNnk/xdzSZPk3eqDAiEAABEIiXQOTiaLzDib83iKPxM4+yR9wwRkk3/rbxUBc/86h7RIxGTTje9hGj8fKOozfEaByU4+sDMRof67h6QozGRTq+fpA5Gh9r9AQCIJBcAhBHLX0LcdQSoLLquGFU5hBLc/BQZwlQYXXEqEKnWJiEGLWAp7QqYlSpYwKahRgNCE5xNcSoYucENA3iaEBwqAYCIAACPgIQRy0vB4ijlgCVVccNozKHWJqDhzpLgAqrI0YVOsXCJMSoBTylVRGjSh0T0CzEaEBwiqshRhU7J6BpEEcDgkM1EAABEIA4Gt41AHE0PJYaWsINowYvhGcDHurCY6mlJcSoFk+EYwdiNByOmlpBjGryhr0tiFF7htpaQIxq84i9PRBH7RmiBRAAARBA5qjlNQBx1BKgsuq4YVTmEEtz8FBnCVBhdcSoQqdYmIQYtYCntCpiVKljApqFGA0ITnE1xKhi5wQ0DeJoQHCoBgIgAAI+AhBHLS8HiKOWAJVVxw2jModYmoOHOkuACqsjRhU6xcIkxKgFPKVVEaNKHRPQLMRoQHCKqyFGFTsnoGkQRwOCQzUQAAEQgDga3jUAcTQ8lhpawg2jBi+EZwMe6sJjqaUlxKgWT4RjB2I0HI6aWkGMavKGvS2IUXuG2lpAjGrziL09EEftGaIFEAABEEDmqOU1AHHUEqCy6rhhVOYQS3PwUGcJUGF1xKhCp1iYhBi1gKe0KmJUqWMCmoUYDQhOcTXEqGLnBDQN4mhAcKgGAiAAAj4CEEctLweIo5YAlVXHDaMyh1iag4c6S4AKqyNGFTrFwiTEqAU8pVURo0odE9AsxGhAcIqrIUYVOyegaRBHA4JDNRAAARCAOBreNQBxNDyWGlrCDaMGL4RnAx7qwmOppSXEqBZPhGMHYjQcjppaQYxq8oa9LYhRe4baWkCMavOIvT0QR+0ZogUQAAEQQOao5TUAcdQSoLLquGFU5hBLc/BQZwlQYXXEqEKnWJiEGLWAp7QqYlSpYwKahRgNCE5xNcSoYucENA3iaEBwqAYCIAACPgIQRy0vB4ijlgCVVccNozKHWJqDhzpLgAqrI0YVOsXCJMSoBTylVRGjSh0T0CzEaEBwiqshRhU7J6BpEEcDgkM1EAABEIA4Gt41AHE0PJYaWsINowYvhGcDHurCY6mlJcSoFk+EYwdiNByOmlpBjGryhr0tiFF7htpaQIxq84i9PRBH7RmiBRAAARBA5qjlNQBx1BKgsuq4YVTmEEtz8FBnCVBhdcSoQqdYmIQYtYCntCpiVKljApqFGA0ITnE1xKhi5wQ0DeJoQHCoBgIgAAI+AhBHLS8HiKOWAJVVxw2jModYmoOHOkuACqsjRhU6xcIkxKgFPKVVEaNKHRPQLMRoQHCKqyFGFTsnoGkQRwOCQzUQAAEQgDga3jUAcTQ8lhpawg2jBi+EZwMe6sJjqaUlxKgWT4RjB2I0HI6aWkGMavKGvS2IUXuG2lpAjGrziL09EEftGaIFEAABEEDmqOU1AHHUEqCy6rhhVOYQS3PwUGcJUGF1xKhCp1iYhBi1gKe0KmJUqWMCmoUYDQhOcTXEqGLnBDQN4mhAcKgGAiAAAj4CEEctAytz6AAAIABJREFULweIo5YAlVXHDaMyh1iag4c6S4AKqyNGFTrFwiTEqAU8pVURo0odE9AsxGhAcIqrIUYVOyegaRBHA4JDNRAAARCAOBreNQBxNDyWGlrCDaMGL4RnAx7qwmOppSXEqBZPhGMHYjQcjppaQYxq8oa9LYhRe4baWkCMavOIvT0QR+0ZogUQAAEQQOao5TUAcdQSoLLquGFU5hBLc/BQZwlQYXXEqEKnWJiEGLWAp7QqYlSpYwKahRgNCE5xNcSoYucENA3iaEBwqAYCIAACPgIQRy0vB4ijlgCVVccNozKHWJqDhzpLgAqrI0YVOsXCJMSoBTylVRGjSh0T0CzEaEBwiqshRhU7J6BpEEcDgkM1EAABEIA4Gt41AHE0PJYaWsINowYvhGcDHurCY6mlJcSoFk+EYwdiNByOmlpBjGryhr0tiFF7htpaQIxq84i9PRBH7RmiBRAAARBA5qjlNQBx1BKgsuq4YVTmEEtz8FBnCVBhdcSoQqdYmIQYtYCntCpiVKljApqFGA0ITnE1xKhi5wQ0DeJoQHCoBgIgAAI+AhBHLS8HiKOWAJVVxw2jModYmoOHOkuACqsjRhU6xcIkxKgFPKVVEaNKHRPQLMRoQHCKqyFGFTsnoGkQRwOCQzUQAAEQgDga3jUAcTQ8lhpawg2jBi+EZwMe6sJjqaUlxKgWT4RjB2I0HI6aWkGMavKGvS2IUXuG2lpAjGrziL09EEftGaIFEAABEEDmqOU1AHHUEqCy6rhhVOYQS3PwUGcJUGF1xKhCp1iYhBi1gKe0KmJUqWMCmoUYDQhOcTXEqGLnBDQN4mhAcKgGAiAAAj4CEEctLweIo5YAlVXHDaMyh1iag4c6S4AKqyNGFTrFwiTEqAU8pVURo0odE9AsxGhAcIqrIUYVOyegaRBHA4JDNRAAARAoy+Loy69/SCMnzaIly1bSYQfvS/27tqaD9tvLIJk8cy5Nn7WAtm7bRv8560Tq1ekqKlcul3769U/qOWQyffXNj7TPnnVoQLfWdNSRh5g6EEeTFU+4YUyWP/FQlyx/ymgQo8nyKWI0Wf5EjCbPn4jR5PkUf0eT6dPkjQojAgEQAIF4CZSpzNE/lqygC1v2pEnDO1P9Iw6m8fc9QR9/8Q1NG92D3v7gS+o9fCpNH3sb7VqjGnXoMZoF0hOoeeOzqMWNg+nk4+pRmysa0sK3PqY7xj1ICx4eQRXKl4M4Gu/1GnlvuGGMHHGsHeChLlbcsXSGGI0Fc2ydIEZjQx1bR4jR2FDH0hFiNBbMsXaCGI0VdyydIXM0FszoBARAIOEEypw4+ulX39G/TzvWuFUyQTv2HEMvPzaaBoyeQXvVrUXtrmxkzr3y5kcmi3Rk3+vpvCu60ltz76Hy5cqZc03a9aXuHZvTcUcdDnE0YQGCG8ZkORQPdcnyp4wGMZosnyJGk+VPxGjy/IkYTZ5P8Xc0mT5N3qgwIhAAARCIl0CZEkcLo5368LO06NufaHif66hN5+F0+UVnpoTT739aTK1uGUaj+nWkAaOm01PTBqWqdxkwgU5ocAQ1bXQ6xNF4r9fIe8MNY+SIY+0AD3Wx4o6lM8RoLJhj6wQxGhvq2DpCjMaGOpaOEKOxYI61E8RorLhj6QyZo7FgRicgAAIJJ1BmxdHX3/2MBnK26APje1HdOjXpyo6DqH2LC+i0E/9hXP7b70upceveNGbADTR28mx6dFLf1KXQa+gUOpTXK72m6bmUl5eX8EukbA0vJycHPi1bLsdos4wAYjTLHAZzyxwBxGiZczkGnGUEEKNZ5rA0zBWf4gABEAABELAjUCbF0bkvvkUTpj9NE4beQvvts4ch2LbLnXTJ+aeZdUblWPTdz9S+20ga3b8j9R42leY9MDRFulOfcXTqCfWROWp37amsjW/TVbolsFHIeAmMTm1FxKha1wQyDDEaCJvqSohR1e4ptXGI0VIjU18BMareRaU2EJmjpUaGCiAAAiBQhECZE0dlt/pxU5+gKSO7Up1au6aADB77ANXcpTp1bHWx+ezZl96h2fMW0oi+HejsZp3pjTl3UeVKFc25hi160EDesb5BvUMxrT5hQYUbxmQ5FA91yfKnjAYxmiyfIkaT5U/EaPL8iRhNnk/xdzSZPk3eqDAiEAABEIiXQJkSR1etWUcX81T5GeN60l/22r0A6Q8/+5q6DZxozlWrVoWu7TKCml14Bl3a8DSzHukx9Q8zmzUtePVdGjtlNs2fOcxs0PTbsg3xegy9RUoAN4yR4o29cTzUxY488g4Ro5EjjrUDxGisuGPpDDEaC+bYOkGMxoY6to4Qo7Ghjq0jZI7GhhodgQAIJJhAmRJHn5z/mpkiX6FC+QIuffXxMVRz1+o0/bEFNGXmXNqydRs1Pu8UsyO9rOGy+I9l1H3wJPpi0Q+07951aXCPtnTkYQeYNiCOJis6cMOYLH/ioS5Z/pTRIEaT5VPEaLL8iRhNnj8Ro8nzKf6OJtOnyRsVRgQCIAAC8RIoU+JoFGghjkZBNXNt4oYxc+yj6BkPdVFQzWybiNHM8g+7d8Ro2EQz3x5iNPM+CNMCxGiYNHW0hRjV4YcwrUDmaJg00RYIgEBZJQBx1NLzEEctASqrjhtGZQ6xNAcPdZYAFVZHjCp0ioVJiFELeEqrIkaVOiagWYjRgOAUV0OMKnZOQNMgjgYEh2ogAAIg4CMAcdTycoA4aglQWXXcMCpziKU5eKizBKiwOmJUoVMsTEKMWsBTWhUxqtQxAc1CjAYEp7gaYlSxcwKaBnE0IDhUAwEQAAGIo+FdAxBHw2OpoSXcMGrwQng24KEuPJZaWkKMavFEOHYgRsPhqKkVxKgmb9jbghi1Z6itBcSoNo/Y2wNx1J4hWgABEAABZI5aXgMQRy0BKquOG0ZlDrE0Bw91lgAVVkeMKnSKhUmIUQt4SqsiRpU6JqBZiNGA4BRXQ4wqdk5A0yCOBgSHaiAAAiDgIwBx1PJygDhqCVBZddwwKnOIpTl4qLMEqLA6YlShUyxMQoxawFNaFTGq1DEBzUKMBgSnuBpiVLFzApoGcTQgOFQDARAAAYij4V0DEEfDY6mhJdwwavBCeDbgoS48llpaQoxq8UQ4diBGw+GoqRXEqCZv2NuCGLVnqK0FxKg2j9jbA3HUniFaAAEQAAFkjlpeAxBHLQEqq44bRmUOsTQHD3WWABVWR4wqdIqFSYhRC3hKqyJGlTomoFmI0YDgFFdDjCp2TkDTII4GBIdqIAACIOAjAHHU8nKAOGoJUFl13DAqc4ilOXioswSosDpiVKFTLExCjFrAU1oVMarUMQHNQowGBKe4GmJUsXMCmgZxNCA4VAMBEAABiKPhXQMQR8NjqaEl3DBq8EJ4NuChLjyWWlpCjGrxRDh2IEbD4aipFcSoJm/Y24IYtWeorQXEqDaP2NsDcdSeIVoAARAAAWSOWl4DEEctASqrjhtGZQ6xNAcPdZYAFVZHjCp0ioVJiFELeEqrIkaVOiagWYjRgOAUV0OMKnZOQNMgjgYEh2ogAAIg4CMAcdTycoA4aglQWXXcMCpziKU5eKizBKiwOmJUoVMsTEKMWsBTWhUxqtQxAc1CjAYEp7gaYlSxcwKaBnE0IDhUAwEQAAGIo+FdAxBHw2OpoSXcMGrwQng24KEuPJZaWkKMavFEOHYgRsPhqKkVxKgmb9jbghi1Z6itBcSoNo/Y2wNx1J4hWgABEAABZI5aXgMQRy0BKquOG0ZlDrE0Bw91lgAVVkeMKnSKhUmIUQt4SqsiRpU6JqBZiNGA4BRXQ4wqdk5A0yCOBgSHaiAAAiDgIwBx1PJygDhqCVBZddwwKnOIpTl4qLMEqLA6YlShUyxMQoxawFNaFTGq1DEBzUKMBgSnuBpiVLFzApoGcTQgOFQDARAAAYij4V0DEEfDY6mhJdwwavBCeDbgoS48llpaQoxq8UQ4diBGw+GoqRXEqCZv2NuCGLVnqK0FxKg2j9jbA3HUniFaAAEQAAFkjlpeAxBHLQEqq44bRmUOsTQHD3WWABVWR4wqdIqFSYhRC3hKqyJGlTomoFmI0YDgFFdDjCp2TkDTII4GBIdqIAACIOAjAHHU8nKAOGoJUFl13DAqc4ilOXioswSosDpiVKFTLExCjFrAU1oVMarUMQHNQowGBKe4GmJUsXMCmgZxNCA4VAMBEAABiKPhXQMQR8NjqaEl3DBq8EJ4NuChLjyWWlpCjGrxRDh2IEbD4aipFcSoJm/Y24IYtWeorQXEqDaP2NsDcdSeIVoAARAAAWSOWl4DEEctASqrjhtGZQ6xNAcPdZYAFVZHjCp0ioVJiFELeEqrIkaVOiagWYjRgOAUV0OMKnZOQNMgjgYEh2ogAAIg4CMAcdTycoA4aglQWXXcMCpziKU5eKizBKiwOmJUoVMsTEKMWsBTWhUxqtQxAc1CjAYEp7gaYlSxcwKaBnE0IDhUAwEQAAGIo+FdAxBHw2OpoSXcMGrwQng24KEuPJZaWkKMavFEOHYgRsPhqKkVxKgmb9jbghi1Z6itBcSoNo/Y2wNx1J4hWgABEAABZI5aXgMQRy0BKquOG0ZlDrE0Bw91lgAVVkeMKnSKhUmIUQt4SqsiRh3H5GzdQrRtK//bRrR9G7/fSnn8Pmc7f7aVP8vjf/xZDn+WZ87zeylvzjvl8riufO787JRNtSntbpM+3HpSVtry92H65nrcnte2tGf6k7bkc2OHrw/5jM+bdl07KC+P8sqVI8p1/7k/5+Xmms9y+H2eOZdryuW45ZzP+J8p75SVOjnlyrvl5ZzzuXdOyubkcDmp4/WZw2XKlzfvnXP8Xvrkn01f8rOU5femPfMz22Jsy+9L6uWk7PC1L59JOa6TP5bCdrvvlcZdacxCjJaGVnaUhTiaHX6ClSAAAroJQBy19A/EUUuAyqrjhlGZQyzNgfBiCVBhdcSoLqfkbNrgCChbN1Mei0FGhOGfc7a477dvJ9q8kd+ziMOfi0CTs1le+d+WrVSJHKFmMxdj1cP5RyxQ8Gue914+EnEk1/xgBAyvrJQz57zyInLk8WdSVsQR06Tbrtt2gbKCU8Qa0wZX5b5Tdkhb0qX0aco4/Xvn/XZ49uVwh3lu304513bPPv7AtCNty0kum2rHtO32acbr9G0EpwqVdDl+B9bYxKi5nooTE7fxBeKJhp6Y6Ip3aYuJIvh5IqErWoYtJhr7cZQJAiYmCwi7jngqYq0jCnNsp4RiFl794rL8jpByXvnUOZ9Q7G/LJy6LiJsSjd1+UkKxEYn5vBGJHRu8c8Y2V1CuvVsVWraafweb32/u7xl+Mb9zzVvn1fn15xUq9Jp6m/95fv2C7aba8LdVqL787vT37b1N/c4tYEtegbIFbHT7KFDfN8Zix1Z4jD7b8jxIhdjkX+R+u72fPayFmXnnxf6C4y3MOa9CxVLFEcTRUuFCYRAAARAolgDEUcsLA+KoJUBl1W0e6pQNBeYwAYijybsMynqM5rDQKKJiDouLeSw4iijpCY55nEWWI9ljmzc5QqRkrknZrfJexElHuDSvW/gzI1i6bcjPkoXGoqbJeHNFTee9X/yUMlxH6uNQRyCvPD9Q+8RgEWrlP0dYzhd+Cwq7rmArYrJXNiXSeuKtPMrnC9SeuJsvBAsKR0CuWKk8bdq4ycmE9LIf/VmNqexIJzvRXMMJPURAyysvgpmIY56oxa/8mSOM8eeSEcmvRvSSz71sR1PerSNZjfzPCG9eRqUpX8Et45Qzdbk905e0ye3Jq+lLPpfPjDCf/lG1kmRhEq3fyP6yOcTXnKUq2bDy+0V+V5msVRG+3Z9zWMA22bIiZJvsVRHFvZ+9zFqnvrl2pLy05S/j/mza53MmS7ZwWyZz1s2gdc85bXm2uRm1JiuX28fvOxvPo24MBGrOej2GXtAFCIAACCSbAMRRS/9CHLUEqKx6WRdelLnD2hyIo9YI1TUQd4yah2JXRPSExBwWHPNYnJTsSPOALlmSIiIacVHExi2cRSnnPcFRPheBUsRJOS9tOj+bLEsz/ZYfwrmMk1XptiFtuRmWRhRVeBgxrgILNCzSmEyXcvLKIg5/nsc/m6mwOzjKmyxLmdXrZgIpG2OOiCtik4gx8hNPL2YFhUWe/J9pO085ds+xlOiUlUr+slJC3nvtcJ0cbscpYwqb17xU2/l9muusjBzONSRZbyLiOVlwZlq0+edmvqWEP08QlOvNy8zzC4JSVwRD7zNu12vfiJFe+262nU+8FMEyNR3bCIyOTY5A6QqaXrafJzp64mYWZfmmc1nh72hRSiYmJZM5Jd46Am2+sOuIv3lG/PWLvSIIc6zLF04c684SCD7x1/zucIXjAuKttMHl3fakvvxsBGARb6Vvry+/6CztueKwv69K5XJo02YRq53fu+b/3Z9Trznu72TvV7N33vs9yFW8Im4LRdswZV1+qb5SHzgnvCRQX7spGzz0O7ChQH1/g/L7NFXfG0vxfad+B5sxFS5b0H73l3sB2z17vR7z2/BdO0XaLcjX9ksiiKPp/DZDGRAAARDYMQGIo5ZXCMRRS4DKqsctvCgbfuLMwUNd9rnUPHQa0VCyE12hUMRIIyJuptpVcmn5irVu1qSX+chipMlw9LIiZUq3iJPy8OqKlG4mZUqwNNmTbh03O9KZFu60oXl67PYqVVm4ccVIESX5X44RJ0WMZFHSe2+ESxF0+DyLQkbIFLGyYiW3vlPXZJ+Zc/ltmHJ+wbMit1HOadu0WalqKBcXYjQUjKYRI+S7giyJlmuEWk94zRdi/aKsEWxFpJWcUSmbEmzlIxFw5XHfJ+K64m5+WelHRBtH3JW2a9eoSEvXsfDiipvmWtqBGJlXsXJ4ENBS6AQQo6EjzXiDuNfNuAtCNwDT6kNHigZBAATKIAGIo5ZOhzhqCVBZddwwKnOIpTl4qNs5QGeNSF8Go5mK7WQ8OkKlszakyXA0mZHe1GzvvCNQitDoZEX6hEoz/ds7V0ioTE3pdtei9Mru3ORYS5jsRxYDjegoWWeFxUgRDFmUNOJkETHSFR5DECPJCJM7zsKMFUxInSFGQwKpqBn8HVXkjBBMQYyGAFFZE4hRZQ4JwRyIoyFARBMgAAJlngDEUctLAOKoJUBl1XHDqMwhluaofKgza+w506qNkGgyG73p1u4mNu7mNZLlaNaRNFmUIlhy2c3OZ2TWlXTERydr0pvS7W2M476X894Ubzcb07Rp+tc3XdcIgEaQdLMUTaairKvnZEpWqlKJNuXxmnmylp9PuPRESyNUyrRWNyPSyXR0pnubjEeTIelkVBrB0Z0Sbsqn+nQyLE1dHJESUBmjkY44+Y3j72iyfIwYTZY/ZTSI0WT6NHmjwohAAARAIF4CEEcteUMctQRYyupm3T2zxpKIQrLun6y5JBlpzsYPRiwyi+u7n/k3gXDPF9gJlz+T+rJxRB7/XKNiDq2RTQdSuxKzgd7PZidh+V/hXZTNdsTuJhgyIPe8txOl7HLs1s1v1yvjtu/fBdlty+yybJpz2/baSG2qYSZC+s7nl3X689nh32WzwNhce42NRcfq2evsGi3n3Q09fOMxO4yavpy28ndo9tvtO++WMcW9HZtN27JaX6HxeO9TG4p4592dPn1sitvZ03uoW7tidf5akBAji0SdmdZqhEOebm0yIL1MSZlK7Zuu7QmJvindZsqsiJEmq9IRH502HFHTvJdXFiKdPtzp2YWyMVNTuHfyOwEPdaX8pam8OIQX5Q4KYB5iNAA0xVUQo4qdE9A0xGhAcIqrIXNUsXNgGgiAQNYQgDhq6SrV4qi7G6cnJqYERREETcaZs4un97knKObI7rLmvCc4Oq9GjEyJj54A6QiSIiyaXZLNz55g6QmUnpDpCpeyg627W61T3u3L9Mf/TN/u5+5ut8YWHCCQBAKyDp+3biMLhs5akEXFyFTGo9mNOH99SWctSBYaeap2sWKkrC9ZUTbDKSpGOtO+nanh6YqR2pDjoU6bR+zsgfBix09jbcSoRq8EtwkxGpyd1pqIUa2eCW4XxNHg7FATBEAABDwCEEctr4U/3nrbTE1NT0x0xUaZKhtUTJTdK92sSS8DsrCYaDZlSOhhxB3ZIdbsHuvuHFtgN1qZKivZabKzLAtAnJno3+3W2QXXrZvajVbqcEYk16tRowqtWcdTjX27BwvK1E7E3m6TqU0uvJ04vc0o+FWyIN3NKbxNKvJ3OTa5kfk7FMtWn75djd0tQ/M/83b69OzxdkRO7XDs6yu1k7Jjsdl0w99Xqi3nfGqzDa8tvy2p8/llnY06nP6cHTkd283uzH57CrEx572dmP32+HZpTu387J33tZ/aYMS/W2nKP9x/GlPDvbUi86dOO4Kk2VG7EmdN8o7ZRkxkUdGZfu1ucuNlTUpmpSdKFtioxhUq3enYZkq3P9PS9CFtSWYlX5fYeMT6NxMe6qwRqmoAwosqd4RiDGI0FIxqGkGMqnFFaIYgRkNDqaYhiKNqXAFDQAAEspgAxNE0nPfTr39SzyGT6atvfqR99qxDA7q1pqOOPMTUXNnslDRayGyRvEpVXEGQM9ZYAMwRMZFfPZHQZJ/Je8kmY5HI2VVWBMb8HWZFjMzjz3Pkc8588wTIHClrMttc0VHOmz6knCNSmv5MObc90x9/niMZdE5bpk9/H6as06axP6YDN4wxgY6pGzzUxQQ6xm4QozHCjqErxGgMkGPuAjEaM/CIu0OMRgw4A80jRjMAPeIuIY5GDBjNgwAIlAkCEEfTcHOLGwfTycfVozZXNKSFb31Md4x7kBY8PIITwcrRsj43FMxOdEU+R/BzxUgzjdYVBL3MRyNAOhmQKdHRL0amBExXfJS1FV3h0bTtipEFsiJN35wpWalqGqNCkeII4IYxWdcFHuqS5U8ZDWI0WT5FjCbLn4jR5PkTMZo8n+LvaDJ9mrxRYUQgAAIgEC8BiKM74b2MN3I574qu9Nbce1jHZDGTjybt+lL3js3puKMOJ9VrjsZ7LSWiN9wwJsKNqUHgoS5Z/oTwkjx/IkaT59Ok/B3dmLeVeCEjkpVieIV287P8k+VytvEn2/hVPjfnuIwpa/7jn3kZGudz/oyXrDGvpgx/Lu3lOPVTbcjP7meygow5x/W2u304ZblF/p5cXmUV9tQ5zzZes10+8+oVLOOz1y0jbcp/ju3Spvfes9uxlXLdDRB5YGZyUV4uleMv7OWf/MfzgPiffOZsWGnOsaG5/CpbPZr3/JP8LJ/JnbR5dcuU4wQCpw2nvFemHG8AKav9yKu0kTrH9Zy+5Zy0w237+5KfzWd8XvqVV/OZU8+xSexhO8Ru815+LmhvjrHVb5e0l0OVczgRIcuPpMRoad2wSa50L27duDbvJda4MS+2nRh1Yt2Lb3mV/5yY92LcqWM+c+PclEm17cS602d+zOb36cS4RJj5/WDKOkt5mTbN7xrnZ6fdfHvMe75uvc/uPOjE0uJAeRAAARAAgUIEII7u5JL48LNvaMCo6fTUtEGpkl0GTKATGhxBTRudTl3+j9cc5TPOP+dmzd2b3H0nm3A7nzt7cbs/uzdo0qjc/OWX8coW/ow/9zYM5xu8VH/uZ+4e6uYG0W+L7CTu1DMrXabO5Zdz7XZ3Gje2pGz0xiJtuGtleufkVdr1lZc2vZ4K2ucbk7GnkI2m7YKfiaFyI+u3pWgZH+8CDH3jNX3lty82VjK35sUfQW4Y5WZLDrlBSi2L6TbvfeLRM2uQFjnnfJC/pKbzk7P7u3OTVLhdZ01UXx23hLO6p3vOrZRfN7/dVIsllfHZmOcaUqQd30ic8YvNhe3KH4NXpsQxFbE7v63UmDwmKbsL9pc/erEnh6pWYl9znXUbeXOw1JhSPxb4IZ9ywfM+lwVqw/Nj0V7zr4WUbUU/Sl0DxVldXPESmvBdRfktFTc2zz+F+yup3eJp+j2RRn/udeNvq6T+alavQCvW8rrAvqPEMRdzokQ/u78j0/JTCYMu/lop3rpifVcMB3+cF/FJKcZX/PVTCttKuFhKvt6KI1m0dOWKPNuB2W/cXHDTPf/vygK+dn8HlHTdFbwuiomxEn1XChap38iFflcUcw2VfG2mH1ElX7PFMC6BT3E8S/W7oiRuxXwugvfKdfyXsYDA5xMM/Q/9fvHQCHXuw3+RMq6YyP0ZMSAl8Ils4AmGhcRK07YjNjiiZL7Q4IieTn8b3b/h6VxTKAMCJRGozPeWRnx1RVUjworg6onDBYRlnxgr5UQI5oaNEOwJy66Q7Ai7jgCc316+kOsJ0HLPXHwZVwh2BWlpr2a1SiZGHZHOEf8LC3hGOPcJcp7oV0DA49jyvjgoKOA5MSn3hCmh0Be7jhiZLww6XyY4bXnCoIj25r0nXvriWGI+9cWEV8Ztv6zGc94xHRCcIAACIAAClgQgju4E4Jvvf05jJ8+mRyf1TZXsNXQKHXrwvnRN03Mp54MJli5AdRAAARAAARAAARAAAU0EqvC66P5MQycDMl+ASmVEuhmKXjZlfrakl6HoZk8WyKTMz140gpgRyHyZiz5BzcnKLNx3fjald04Tu9LaYrJyC2XJpgRs95yXdetl7RYob8rkZ+0Wbc/J9vUE8oJ9eefcDFpPRHdfvaxdLxN4Q17BL3JKO1aUzxyByhzTTpaxI06nMoj9mclujHuZxCZb2hefXpZysZ/5spW9TOcC5VJtO0K4U6Zg1rK/nl/s9mwu+Fn+76N+ex+XObDoGQRAAAQSQgDi6E4c+dHn31DvYVNp3gNDUyU79RlHp55Q32SO9vvtPZO14GX3edMjUvt5u9mE/jJehqHzDWl+xmGqTqHPnG9O3Y3CvTrFfFak71QZtx/Xzvxyrt2mba+MZ1P+tA4vu6RA+z578u0r2I9jc/5nTv3i+ynIJ//bY4dPcfY57RRl6CubYp8/XUbqbIzoxlZuuuTwEnckQ9Z7n/rMl8FrzvnKOGW9HN+34jz4AAAcPUlEQVTi2/HKFGm3mHYK2OJm+hb+LEgZx26ffYXH5L13B13smIopUyIrXztF7HWj0h1+ip7H28lmLv4o7kw+/YJ1SlW2mMIlWRFdf8X3WPw4SuJTtHRJOEs3jmj6C4VxCY0UN77S9FdiWQX9lc536V9X/t9vfo+XzK3odVEq20q4ODX0V5px+H/HFeBWivGVpr+Sr81i4r/E36UFy8o77wG+oODniID+c6lpz54AmI6A6AqF+eKkO/1ZPi9Qv6iAWJI93t/vEv9g4AQI7ICA3FfmC6/5SxgYYbWw8OtbksFbWiFfCPYypPMzm5366Qi/JYm7Re0RW1MinysW5i81kL8kQhEhzhXzvLgttQDoE/nzxcd84d8IgL4Y9pcpKka6omLhNvk94hnhCgIgAAIgEIQAxNGdUFuxag2d3awzvTHnLqpcqaIp3bBFDxrIO9Y3qHco1hwNctUprhNkWr3i4ZR507CeYfIuAcRosnyKGE2WP2U0iNFk+RQxmix/IkaT50/Pp8kcGUYFAiAAAvERgDiaBus2nYfTMfUPo3ZXNqIFr75LY6fMpvkzh5kNmrAhUxoAs6gIHuqyyFlpmIqHujQgZVkRxGiWOWwn5iJGk+VPCC/J8ydiNHk+xd/RZPo0eaPCiEAABEAgXgIQR9PgvfiPZdR98CT6YtEPtO/edWlwj7Z05GEHmJoQR9MAmEVFcMOYRc5Kw1Q81KUBKcuKIEazzGEQR5PlsDRGgxhNA1IWFcHf0SxyVpqmIkbTBJVFxcSnOEAABEAABOwIQBy14wdx1JKftuq4YdTmETt78FBnx09jbcSoRq8EtwkxGpyd1pqIUa2eCWYXYjQYN821EKOavRPMNoijwbihFgiAAAj4CUActbwekDlqCVBZddwwKnOIpTl4qLMEqLA6YlShUyxMQoxawFNaFTGq1DEBzUKMBgSnuBpiVLFzApoGcTQgOFQDARAAAR8BiKOWlwPEUUuAyqrjhlGZQyzNwUOdJUCF1RGjCp1iYRJi1AKe0qqIUaWOCWgWYjQgOMXVEKOKnRPQNIijAcGhGgiAAAhAHA3vGoA4Gh5LDS3hhlGDF8KzAQ914bHU0hJiVIsnwrEDMRoOR02tIEY1ecPeFsSoPUNtLSBGtXnE3h6Io/YM0QIIgAAIIHPU8hqAOGoJUFl13DAqc4ilOXioswSosDpiVKFTLExCjFrAU1oVMarUMQHNQowGBKe4GmJUsXMCmgZxNCA4VAMBEAABHwGIo5aXA8RRS4DKquOGUZlDLM3BQ50lQIXVEaMKnWJhEmLUAp7SqohRpY4JaBZiNCA4xdUQo4qdE9A0iKMBwaEaCIAACEAcDe8agDgaHksNLeGGUYMXwrMBD3XhsdTSEmJUiyfCsQMxGg5HTa0gRjV5w94WxKg9Q20tIEa1ecTeHoij9gzRAgiAAAggcxTXAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQJkkAHG0TLodgwYBEAABEAABEAABEAABEAABEAABEAABEAABEIA4imsABEAABEAABEAABEAABEAABEAABEAABEAABECgTBKAOFom3Y5BgwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIQBwtdA1MmPE0PfLUy7Rly1b653F/pwFdW1HVKpXpp1//pJ5DJtNX3/xI++xZhwZ0a01HHXmIqb112zYaM/lxmvbIfHr96fG02641zOevvfMZdegxisqXL5fqpWuHy+nKS87GlRcTge9++JX6jZxOi777ierU2pW6MP8zTz7a9D555lyaPmuB8d9/zjqRenW6isqVyzXnxM+39L2bTjm+HvW+uUXKWrku+o+aTs8vfI+qV6tCN7VtQhede3JMo0E3QiDMGO09bCrNffGtfLB5ebT/vnvS09MGA3ZMBMKO0f99+xMN4BhdvnINVa5UkTpf14xOPaF+TKNBN2HHaB7H5Ngps+mp516nTZs2U7MLz6Bbrm0K0DESCBKja9dt4L+V99Mb735OFSqUp8sbn0kdrr7IWL2j+6kYh1Wmuwryd/Tl1z+kkZNm0ZJlK+mwg/el/l1b00H77WU4yu/bHoMn0e9LVtCc+/H3M+6LK+wY3VF7cY+trPYXZoxu355HIyc+SnOef4O2bd9Opx5fn/p2bsnPt5XKKl6MGwRAAASKJQBx1Ifl+YXv07ips+m+Ud1Z+KpMN/YeR8fUP4yuv+YianHjYDr5uHrU5oqGtPCtj+mOcQ/SgodHUAUWPm/sNZYOP2Q/mvjAHPrvk+NS4uizL71DL/z3PRrd/wZcfhkicFGrXtSk4b9YkP43vfHe53Rrv7vYR+Ppky++pd7Dp9L0sbfRrjWqsYg9mgXSE6h547Poo8+/oUFjHqBDDtyHalSrWkAcveu+J+lbFlyH9LzWvPa98z566J4+RoTBET2BsGO0sMXj73uCBfJyJuZxxEMg7Bi9sGUvuq7FhSaeRSi9utMd9OrsMeZLLhzREwg7Rp95/k2698FnaNqYHpSbm0utbhlqRLbzzjg++sGgB0MgSIwOHvuAEcwG92hLy1espubXD6SRfa+nY/9x2A7vp4A8egJBYlR8eGHLnjRpeGeqf8TBJH8rP/7iG5o2ugetW7+RmncYQP866Sha+PYnEEejd2GRHsKO0ZLaq1IZ97pxuDfsGH1s7qs0e+5Cmjiss/my6vrbRtOJx/wt9YVVHGNCHyAAAiCQDQQgjvq89Pmi703G6NF//6v5dPpjC+jLr3+gbtc3p/Ou6Epvzb2HyrNwIkeTdn2pe8fmdNxRh5sHcBFH653ZqoA4OmvOK/TZ/76ngZxliiN+ApIR+uT81+ji809N+e2Ehh3osXv70/2znqO96taidlc2Moa98uZHJov0fn4A/+nXP0yW6YzHnqely1cVEEfPanorTR3VjQ7g7EIc8RMIO0b9I1j853Jq23k4zZ4yAGJ3TK4NO0Yly7D+Wa0L/B7+54Ud6YHxvejg/feOaVRlu5uwY7TX0Cl08AF7U+vL/2PAPvr0y/TWB1/SmAH40jGOKy1ojL78xkcmu1Bm2shxQ8+xdAbP2jj9n0ft8H4qjjGV9T6CxOh+++xBn371Hf37tGMNPpld07HnGHr5sdG0fsNGc68k/2SmDjJH473Cwo7Ri847ucR75/32qRvv4Mpob2HH6CdffkeVKlYwz6pyTHloHn33w2+c6NGujBLGsEEABECgeAIQR3dwZVzXfRSddWoDfqjex0zTfGraoFTpLgMm0AkNjqCmjU5PfVZYHJU/Pi9wNuoGngq4ctUaM0W7100tqFpVZDBlIiA/++r/6Kbbx9OLj46idl3vpMsvOjN1o//9T4s5I2mYyTDzjokz5hQQR1evXU+nXdyJulx3Gc184gW+0ahIndpcQmee0iATw0GfTMA2Rv0QRYQ56u+HFIhpQI6XgG2MirVtbh1O//7XsSa+P/zsa57qeS/Ne3CYyfLHET8B2xiVpS8O2n+vlDj69II3+Ius5+iJqQPjHwx6pNLGqCCTKfaNrr7NfLG4avW6tO6ngDo+AqWNUbFs6sPP0iJODBje57qUofL7FuJofH4rqSfbGC38RaK/vdzcnMwPsAxaEFaMCrpff19KN/UZT215JiRmYJTBiwlDBgEQ2CEBiKMl4Lnn/qfog0+/pskjutLbH35BYyfPpkcn9U2VFiHlUM6KuKbpuanPCoujL/z3fZJv61pddr7JXBRB9YB99zACKY54CfyyeAld23UE9bn5ajrp2CPpyo6DqH2LC+i0E/9hDPmNbxYat+5N7z47MWVYYXFUbigkg/jG1pfwTUUjzgr+P9PmM9OHUN06NeMdEHqjMGLUwygZL5IN/sKjIyGiZejaCiNGxfRF3/1spl7n5ORwRtMmGtGng/mSC0f8BMKI0XkvvU0Tpz9N9/MSKPJgLg91y3iK77wHhsY/oDLeY5AY3chfDt/MX0rKVOzrWzamN9//PK37qTKOOrbhB4nR19/9jAaOnmEy8v33PhBHY3NbiR2FEaP+xgu3l/kRlj0LwozRy9r3J8lKlS+P5VkUYnfZu54wYhAAgR0TgDhaiI9Myxwyfib9+MsfZq1QWaxa1qCU7BX/w1inPuPMJh87yhwtjF7E1t7DptD8mcNxXcZIQMQSeaDuccMVZkqfHG273EmXnH+aWZfQE1Tadxu508zRkxpdT+/Mm2A2Y5JDstRkg5BzTz8uxhGV7a6iiFHJ8v7h599pUPc2ZRtuhkYfVoxu2rzFZKj1vfUak6n/f5IRfvNQfojvSTItFEc8BMKMUdlIQtYCn//yO7yed3Wemt3ALIPyyITb4xkMekn9jSzt31GZbdGR17Y7/ugjzJeKcqR7PwXs0RIIGqOygeEE/rJiwtBbivxOhTgarc921nqQv6PFxajXT3Ht7cwGnA+PQBQxKtbJl4tD75rJ+y1UL7BsWHiWoyUQAAEQyF4CEEcL+W743Q/TH0tX0NBe7VMZZCt4SvzZzTrTG3PuSq1F2LBFD7OWaIN6h6ZaKJw5+t2Pv5kNfbxv1t/56CsaPPZBrMcUY7z8/Nuf1K7LCLrjtnbsK2ctWTlks4iau1Snjq0uNu9l86zZ8xaaaX/eUThzVD4XcfSxyf3pL3vtboq15qn4V136b0ytj9GnYcaoZ3ZLFtBaNjsvJZ7HOJwy31WYMSrr4Mn0s4VPjE1xlS9CLjznn/zv5DLPOi4AUcSoZ/u0R+abLy/7dWkZ13DKfD9BYlS+qJAvD2XapvyN9I5076fKPPSIAQSJUdmtftzUJ2jKyK5mXfbCB8TRiJ22g+bDjFHppqT2MjfCstdzmDH62juf0j783HLQfnsZkO99/D9eAuN+zMAoe5cVRgwCILATAhBHfYDkj4WIl49P6Z/awMc73YY3apGd62UDnwWvvktjp3Amy8xhBcoVFkfHTH7cbOgkG0dwQirvlH632aDg1vbNcGHGREBEr8s4s/P8M50MUe+Qm/huAyfSjHE9qRpngV7LAqpkgF7a8LRUmeLE0TvGPWim6sqD+ZeLfqBrOdt07owhxT4oxDTEMtVN2DHqwWtwTjta8PCdtHttLI8Q9wUVZoxKFsxZTW+hqSO7Uf2/HUxLlq2ki1v34eVRutARf90/7qGVyf7CjlERZB7hTZjGD77J+LPlTUNoBO96ftSRh5RJvpkYdJAYlamgS3i5EsniLnykcz+ViXGWlT6DxKjsSH8xLz0k90zel8OFeUEczdwVFHaMltRe5kZYtnoOO0ZH3/sYP4/+yDMiO5qNmQZxgsgavl8a1a9j2QKL0YIACIDATghAHPUBuu2OyTT3xTepnLsjvZw65IB96HHOFFz8xzLqPngSfcGC2L5716XBPdrSkYcdwBstraXTm9xsWpGd7itUKG9+fpHXLpSp17Iu06tvfWxEVNm4R3a+r1K5Ii7MGAjIWknnNu+a8onX5YjbO9DZpx5D0x9bQFNmzqUtW7dR4/NOoe4dm5t1Cofe9ZB5GN++fTuL2nnmemja6F9mfR65mejJ682+y1nAtWruQl07XIas0Rh86XURdoxK9osIapIR/OlL97Gvc2McDbqKIkYXvvUJf3n1uPkSQ/zZosk5Zn0tHPEQCDtGd+UM/9uH30cL3/6YZ3OUN9n+zS44PZ7BoBcKGqNnN7uVxexVlOPbwEXiUJa3Kel+CrjjIRAkRp+c/5pZXsq7x/UsffXxMfT+p4vMmvqSBSD3U1LmwH33pCfvy9/ENJ6Rlc1ewo5RyfTe0b1z2aQc76jDjtHK/Nw5aMwD9OqbH9P2vO109N//yl9ctcR+CfG6Fb2BAAhkAQGIo1ngJJgIAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQPgGIo+EzRYsgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAJZQADiaBY4CSaCAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiETwDiaPhM0SIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgEAWEIA4mgVOgokgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAALhE4A4Gj5TtAgCIAACIAACIAACIAACIAACIAACIAACIAACIJAFBCCOZoGTYCIIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgED4BCCOhs8ULYIACIAACIAACIAACIAACIAACIAACIAACIAACGQBAYijWeAkmAgCIAACIAACIAACIAACIAACIAACIAACIAACIBA+AYij4TNFiyAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAllAAOJoFjgJJoIACIAACIAACIAACIAACIAACIAACIAACIAACIRPAOJo+EzRIgiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQBYQgDiaBU6CiSAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAuETgDgaPlO0CAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgkAUEII5mgZNgIgiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQPgEII6GzxQtggAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIZAEBiKNZ4CSYCAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgED4BiKPhM0WLIAACIAACIAACIAACIAACIAACIAACIAACIAACWUAA4mgWOAkmggAIgAAIgIB2Aj2HTKZvf/iVHpnQl3Jzc1Lmrlm7nhpdfRtd3fRcatP8P9qHAftAAARAAARAAARAAARAAATKGAGIo2XM4RguCIAACIAACERBYOWqtUYE7diqMTVvfFaqi8FjH6APPv2aZt3bj8qXKxdK11u3bQutrVAMQiMgAAIgAAIgAAIgAAIgAAJZSwDiaNa6DoaDAAiAAAiAgC4Czzz/Jg1iMXTeA0OpTq1d6YtFP9AV1w+kmff0pr8fdiD99vtSGjB6Br3/yf+oerWqdNqJ9anb9c355ypmIHOef4PufXAu/crlau+2C7Vsdh5ddem/zblhdz9MkoW6as06FlsX0Ztz7tY1eFgDAiAAAiAAAiAAAiAAAiCQlQQgjmal22A0CIAACIAACOgk0K7LCKpVswYN6XktNe8wgI6u91fqccMVxtjLr+tP/zjyELqpbRPatHkz9Rh8rxFB77itHf3w8+/UsEUPGjewE516Qj365MvvqG3nO+nBu3tTvcMPpJETZ9EzL7xJba9oSOedcbwRX3GAAAiAAAiAAAiAAAiAAAiAgC0BiKO2BFEfBEAABEAABEAgReDn3/6kxq1609mnHkMffPY1zbn/DqpapRJ99r/vqcUNg+i9+ZOoQoXypvynLIBedeNg+vD5yZTD/y1fuZp2r10z1dZFrXrRFTxF/7KLzqRRk2bR/FfepRceGQHaIAACIAACIAACIAACIAACIBAaAYijoaFEQyAAAiAAAiAAAkJg8sy5NGby43TPkFvoXyf9w0CZ99Lb1G3gxGIBPc+C59571KapDz9Lz3K51Tx1nnJyaOmylXRr+2ZmMycRR7/4+geaOrIbIIMACIAACIAACIAACIAACIBAaAQgjoaGEg2BAAiAAAiAAAgIgQ85Y7TFjXfQW3PvoV2qVzVQ5r/8DvUbeT+9M29CsZCeePa/LIA+RhOG3Wqm0ctxadvb6aJzT06Jo998/ytNGHoLIIMACIAACIAACIAACIAACIBAaAQgjoaGEg2BAAiAAAiAAAiUJI7K5kzN2vejF2eNor3q1jKg1m/YRBs3bTZrlPYeNpW2bNlKw3q3N+fWrttAZzS5mW5sfQnEUVxWIAACIAACIAACIAACIAACkRGAOBoZWjQMAiAAAiAAAmWTQHGZo0Lisvb9aY+6u9HArm0oNzeHhoyfSX8sWUFTR3Wju6c9Sc/xmqIPT7idtm7dRrePuI++++E3OuPko6nLdZeZafXIHC2b1xNGDQIgAAIgAAIgAAIgAAJREoA4GiVdtA0CIAACIAACZZBASeLoL4uX0KAxD9D7n/yPypUrRyc2+Bv1ueVqs/P8ylVrqXP/e+jTr76jPXevRd06NqfflyynYXc9RDdw9ujyFashjpbBawlDBgEQAAEQAAEQAAEQAIGoCUAcjZow2gcBEAABEAABEAABEAABEAABEAABEAABEAABEFBJAOKoSrfAKBAAARAAARAAARAAARAAARAAARAAARAAARAAgagJQByNmjDaBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQUEkA4qhKt8AoEAABEAABEAABEAABEAABEAABEAABEAABEACBqAlAHI2aMNoHARAAARAAARAAARAAARAAARAAARAAARAAARBQSQDiqEq3wCgQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIGoCUAcjZow2gcBEAABEAABEAABEAABEAABEAABEAABEAABEFBJAOKoSrfAKBAAARAAARAAARAAARAAARAAARAAARAAARAAgagJQByNmjDaBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQUEkA4qhKt8AoEAABEAABEAABEAABEAABEAABEAABEAABEACBqAlAHI2aMNr//3bsmAQAAACBYP/WphB+uAIi5yYBAgQIECBAgAABAgQIECBAgAABAkkB52hyFqUIECBAgAABAgQIECBAgAABAgQIEHgLOEffwvIJECBAgAABAgQIECBAgAABAgQIEEgKOEeTsyhFgAABAgQIECBAgAABAgQIECBAgMBbwDn6FpZPgAABAgQIECBAgAABAgQIECBAgEBSwDmanEUpAgQIECBAgAABAgQIECBAgAABAgTeAs7Rt7B8AgQIECBAgAABAgQIECBAgAABAgSSAs7R5CxKESBAgAABAgQIECBAgAABAgQIECDwFnCOvoXlEyBAgAABAgQIECBAgAABAgQIECCQFHCOJmdRigABAgQIECBAgAABAgQIECBAgACBt4Bz9C0snwABAgQIECBAgAABAgQIECBAgACBpIBzNDmLUgQIECBAgAABAgQIECBAgAABAgQIvAWco29h+QQIECBAgAABAgQIECBAgAABAgQIJAWco8lZlCJAgAABAgQIECBAgAABAgQIECBA4C3gHH0LyydAgAABAgQIECBAgAABAgQIECBAICngHE3OohQBAgQIECBAgAABAgQIECBAgAABAm8B5+hbWD4BAgQIECBAgAABAgQIECBAgAABAkkB52hyFqUIECBAgAABAgQIECBAgAABAgQIEHgLOEffwvIJECBAgAABAgQIECBAgAABAgQIEEgKOEeTsyhFgAABAgQIECBAgAABAgQIECBAgMBbwDn6FpZPgAABAgQIECBAgAABAgQIECBAgEBSwDmanEUpAgQIECBAgAABAgQIECBAgAABAgTeAs7Rt7B8AgQIECBAgAABAgQIECBAgAABAgSSAs7R5CxKESBAgAABAgQIECBAgAABAgQIECDwFnCOvoXlEyBAgAABAgQIECBAgAABAgQIECCQFHCOJmdRigABAgQIECBAgAABAgQIECBAgACBt4Bz9C0snwABAgQIECBAgAABAgQIECBAgACBpIBzNDmLUgQIECBAgAABAgQIECBAgAABAgQIvAWco29h+QQIECBAgAABAgQIECBAgAABAgQIJAUGqML4OzVW+cYAAAAASUVORK5CYII=",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"wplt.get_figure_time_series_element_used_by_entities()#.write_image(\"default_yearly_plot.pdf\", width = 1000)"
]
},
{
"cell_type": "markdown",
"id": "062f0906-96ba-4a15-8346-edd78455bdaf",
"metadata": {},
"source": [
"We can plot sum of usage by all and by SRC of the concept \"Social sustainability\" ('https://openalex.org/C52407799')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "949fc2df-9855-44f5-875a-d79d96a9cfc6",
"metadata": {
"ExecuteTime": {
"end_time": "2024-04-22T17:24:47.531393Z",
"start_time": "2024-04-22T17:24:46.953101Z"
},
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "entitie=sum_all_entities
Year=%{x}
nb_used=%{y}",
"legendgroup": "sum_all_entities",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "sum_all_entities",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023
],
"xaxis": "x",
"y": [
25,
24,
34,
29,
28,
26,
29,
25,
21
],
"yaxis": "y"
},
{
"hovertemplate": "entitie=I138595864 Stockholm Resilience Centre
Year=%{x}
nb_used=%{y}",
"legendgroup": "I138595864 Stockholm Resilience Centre",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "I138595864 Stockholm Resilience Centre",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023
],
"xaxis": "x",
"y": [
1,
3,
3,
5,
2,
4,
4,
6,
3
],
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"legend": {
"title": {
"text": "entitie"
},
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Plot of the yearly usage of C52407799 (Social sustainability) by the entities",
"x": 0.5,
"xanchor": "center",
"yanchor": "top"
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
2015,
2023
],
"title": {
"text": "Year"
},
"type": "linear"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
-0.8333333333333333,
35.833333333333336
],
"title": {
"text": "nb_used"
},
"type": "linear"
}
}
},
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"wplt.get_figure_time_series_element_used_by_entities(element = 'https://openalex.org/C52407799', y_datas = ['sum_all_entities', 'I138595864 Stockholm Resilience Centre'])#.write_image(\"sum_yearly_plot.pdf\", width = 1000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}